
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Revisiting the location of FDI in China:  

A panel data approach with heterogeneous shocks1 

Lei Hou, Kunpeng Li, Qi Li, Min Ouyang 

 

Abstract  Foreign Direct Investment (FDI) is viewed as a primary driving force in shaping the 

global economy and receives particular attention in empirical studies. In this paper, we argue that 

many of the existing studies ignore endogeneities that arise from shocks in source and destination 

countries. To address this endogeneity issue, we take the “controlling through estimating” idea from 

the econometric literature and propose using panel data models with heterogeneous shocks to deal 

with it. We consider the quasi maximum likelihood (QML) method to estimate our proposed model. 

We investigate the asymptotic properties of the QML estimator, including the consistency, the 

asymptotic representation, and the limiting distribution. We also propose new statistics to test the 

validity of the use of traditional dynamic and static panel data estimation methods. Applying it to 

the location determinants of inward FDI in China, we find that the endogeneity issue does exist, and 

that controlling for heterogeneous shocks helps to improve the estimation results. 
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1 Introduction

In past decades, Foreign Direct Investment (FDI) has been a driving force in shaping the global
economy. After the global economic and financial crisis of 2008-2009, the strong recovery of
FDI was a principal factor in the global rebound (World Investment Report 2016, UNCTAD).
The importance of FDI to the world economy has led to extensive research in multiple disci-
plines, including international business, economics, and management (e.g., Nielsen, Asmussen
and Weatherall (2017)).

Following from the Ownership-Location-Internalization paradigm of FDI theory, a large stream
of the FDI literature focuses on the location decision of FDI firms. Various location-specific char-
acteristics, the fundamental factors in attracting FDI, have been investigated in empirical studies.
Some typical economic factors – such as labor cost, market size, infrastructure, taxes, tariffs, and
exchange rate – are well-established determinants for the FDI decision (e.g. Cheng and Kwan
(2000), Blyde and Molina (2015)). Blonigen (2005), Nielsen, Asmussen and Weatherall (2017)
provide excellent reviews of the important factors that determine FDI. Further, other local at-
tributes – including the quality of institutions, corruptions and government efficiency, the access
to market and supplier, and the proximity to alternative locations – also play important roles
in determining FDI (Kang and Jiang (2012), Du, Lu and Tao (2008), Amiti and Javorcik (2008),
Blanc-Brude et al. (2014), Cole, Elliott and Zhang (2009)).

In this paper, we argue that many of the existing empirical studies on FDI locations may suffer
one source of endogeneity arising from the fact that FDI is a cross-border activity. To illustrate
this, we note that FDI is an economic activity in its source countries. So, its volume is directly
linked with economic conditions (or economic shocks) in source countries. Negative shocks in
source countries would decrease the volume of FDI even although the destination region may
possess many attractive features. On the other hand, the local characteristics of the destination
region, which are used to explain the variations in FDI volume among different regions, are
subject to economic shocks in its destination country. If shocks in source countries are correlated
with those in the destination country, as we believe is typical in the real world, then endogeneity
occurs.

We consider China’s FDI inflow as an example to further explain this point. Figure 1 presents
a picture of inward FDI on China from 1990 to 2010. As can be seen there, the total FDI inflow
grows rapidly over the sample period, except for two episodes of dips that correspond to the
1998-2000 Asian Financial Crisis and the 2008-2009 Subprime Crisis. This basic fact lends strong
support to the previous argument that FDI volume is linked to shocks in source countries. More-
over, as a response to the subprime crisis the central government of China launched an economic
stimulus package of four trillion RMB, designed to offset the negative effects of the subprime
crisis on the Chinese economy. This huge stimulus plan, which we view as a domestic shock to
the host country, has a great impact on local FDI determinants, including wages, infrastructure,
market demand, etc. Given these facts, we believe that one should take the endogeneity problem
seriously when analyzing FDI data.

Insert Figure 1

In this paper we adopt the “controlling through estimating” idea in the econometric literature
to address the endogeneity issue. We introduce domestic and foreign shocks into traditional
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fixed-effects panel data models to deal with this problem. Because the nature of the shocks
is pervasive, we follow Stock and Watson (1998), modeling transitions of these shocks with a
factor model. Specifically, we use factors to denote the shocks, and factor loadings to denote
responses to shocks. The endogeneity is controlled for by estimating the regression coefficients
simultaneously with factor loadings and variances of factors. A detailed description of the model
is elaborated in Section 2.

China has experienced a growth miracle over the last four decades. To drive the economic
recovery as fast as possible in its early stages, the central government of China authorized local
governments to launch various policies to attract FDI. This makes China a unique subject for
studying the location determinants of FDI. There have been many studies on this topic; see
Amiti and Javorcik (2008), Cole, Elliott and Zhang (2009), Du, Lu and Tao (2008), and Fung,
Iizaka and Parker (2002)), to name only a few. However, nearly all of these studies ignore the
possible endogeneity issue resulting from the heterogeneous shocks mentioned above. Using
our proposed new model, we revisit the location determinants of inward FDI on China. We find
that regions with more FDI inflows in last period, larger local markets, broader infrastructure
stock, lower labor costs, a higher level of openness, more government intervention and better
human capital availability, attract more FDI. These results are consistent with economic theory.
A comparison with traditional estimation results suggests that controlling for heterogeneous
shocks helps to improve the estimation results.

Our paper contributes to the existing literature in several dimensions. First, we point out
a potential endogeneity issue, which to a large extent is ignored in the existing empirical FDI
studies. Because the source of the endogeneity stems from cross-border economic activities, the
same endogeneity issue may exist in other areas of international economics. Second, we develop
a panel data model with heterogeneous shocks to exclusively address this potential issue. Our
proposed model is closely related to, but different from, a rapidly growing literature on panel
data models with interactive effects. Models of this type have received much attention recently
in applied studies; see, e.g., Gobillon and Magnac (2016) and Xu (2017) who estimate average
treatment effects based on factor structure models. We use quasi maximum likelihood (QML)
method to estimate the model. The QML method has been used often in factor analysis, e.g.,
Doz, Giannone and Reichlin (2012), Bai and Li (2012, 2016), etc. It has advantage in dealing
with large dimensional cross-sectional heteroskedasticity parameters. We establish the asymp-
totic properties of the QML estimator. Third, we propose a new statistic to test the validity of
the use of traditional panel data methods, which are popular in empirical FDI studies. We dis-
cuss the rotational indeterminacy issue associated with this test. The proposed statistic can be
viewed as the sum of square of sample canonical correlations and is invariant to the rotational
indeterminacy. We investigate the asymptotic properties of this new statistic. Fourth, we apply
our new model to China’s FDI location study. We find that after controlling for the endogeneity,
the estimation results are much improved.

This paper is organized as follows. Section 2 gives a detailed description of our methodology.
Section 3 gives the quasi likelihood function that is used in our theoretical analysis, and discusses
the identification issue. Section 4 imposes some assumptions needed for the theoretical analysis.
Section 5 examines the asymptotic properties of the QML estimator and finds that the QML esti-
mator has five non-negligible bias terms. The estimation of the biases and the limiting variances
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is also discussed. Section 6 investigates hypothesis testing on the validity of the traditional panel
data estimation methods. Section 7 discusses the method on obtaining the numerical value of
QML estimator based on the expectation conditional maximization (ECM) algorithm. Section
8 runs Monte Carlo simulations to investigate the performance of the QML estimator and its
competitors. Section 9 applies our method to the FDI location determinants in China. Section 10
concludes. In the appendix, we provide detailed proofs of the main theoretical results.

2 Methodology

When a regression model suffers from endogeneity, one widely-used method is to find instru-
mental variables (IV). But qualified IVs are difficult to find because they are required to be
uncorrelated with the errors but correlated with the endogenous explanatory variables. It is very
challenging for researchers to verify these two conditions, whether the proposed IVs are qualified
(or not) remains largely agnostic. This is the typical case in empirical FDI location studies. In
the previous section, we point out that the shocks in source countries may cause an endogeneity
problem, but the nature and characteristics of those shocks was largely left unspecified. This
makes it difficult for applied researchers to find the qualified IVs .

To address this concern, we adopt the “controlling through estimating” idea from the econo-
metric literature. We propose the following dynamic panel data model with heterogeneous
shocks

Yit = αi + ρYit−1 + X′itβ + κ′i gt + eit, (2.1)

Xit = νi + γ′iht + vit, (2.2)

where Yit is the dependent variable; Xit is a k-dimensional vector of explanatory variables. αi

and νi are the individual intercepts; and eit and vit are the idiosyncratic errors. gt denotes r1-
dimensional outside shocks and ht denotes r2-dimensional domestic shocks. We allow gt to be
either correlated or uncorrelated with ht, or allow gt to contain partial factors which are also
contained in ht (i.e., gt and ht can have some common components). We note that equation (2.1)
is capable to allow the lags of explanatory variables.

This model is related to the rapidly growing literature on panel data models with interactive
effects or common shocks¬. Overall, the existing literature can be classified into two branches.
One branch assumes that the errors in the Y equation have a factor structure, but the inner
structure of explanatory variables is unspecified. Representative studies include Bai (2009), Moon
and Weidner (2017) and Li, Qian and Su (2016), among others. In terms of model specification,
these studies are more general than the one in this paper, because we also assume that the
explanatory variables have a factor structure, as seen in equation (2.2). However, one undesirable
feature of these studies is that their estimations are all performed using the least-squares-method,
under the assumption of cross-sectional homoskedasticity. If cross-sectional heteroskedasticity is
heavy, the lease-squares estimator will have a O( 1

N ) bias and its limiting variance will be unduly
large. The unsatisfactory performance of the least-squares estimator can be seen by simulations
in Section 8. As shown in Figure 2, the FDI inflows into different provinces of China vary widely,

¬For the applied studies on panel data models with interactive effects, see Eberhardt et al. (2013), Holly et al. (2010),
Pesaran and Kapetanios (2005), Castagnetti and Rossi (2013), Moscone and Tosetti (2010), to name a few.
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from 81 million dollars in Ningxia province to 28,500 million dollars in Jiangsu province in 2010.
Because of this, we believe that the least-squares method is not the best way to estimate the
model.

Insert Figure 2

The second branch assumes that both the errors of the Y equation and the explanatory vari-
ables have factor structures. Studies in this branch include Pesaran (2006), Pesaran and Kapetan-
ios (2005), Bai and Li (2014), Greenaway-McGrevy, Han and Sul (2012), among others. Our study
falls within this scope. Pesaran (2006) proposes the common correlated effect (CCE) estimation
method: it seeks to approximate the space spanned by unknown factors with one spanned by
cross-sectionally average observations. Once the space spanned by factors is well approximated,
the correlated effects arising from the common factors can be controlled. Chudik and Pesaran
(2015) extend the CCE method to the dynamic panel data models. Alternatively, Pesaran and
Kapetanios (2005) propose a two-step principal component (PC) estimation method in which the
factors are first estimated by the PC method and then the regression coefficients are estimated
by replacing the factors with their PC estimates. Pesaran and Kapetanios (2005) use simulations
to show the feasibility of their two-step estimation procedure. The asymptotic properties of the
two-step PC estimators are investigated by Greenaway-McGrevy, Han and Sul (2012). The gen-
eralized method of moment (GMM) is considered by Ahn, Lee and Schmidt (2001, 2013) under
the fixed-T setup. Again, we note that the above studies except Bai and Li (2014) do not take into
account cross-sectional heteroskedasticity.

The current paper differs from Bai and Li (2014) in several aspects. First, Bai and Li’s model
is static but ours is dynamic. This seemingly-trivial difference actually poses new challenge on
the analysis of consistency. In the QML estimation, the endogeneity is controlled by explicitly es-
timating the loadings and variance of factors ft = [g′t, h′t]

′ because these two parts are responsible
for the endogenous correlation. However, the lagged dependent variable Yit−1 does not include
gt or ht as the factors. So controlling the endogeneity arising from ft does not guarantee the
consistency of the QML estimator for ρ. New arguments are therefore needed to justify validity
of the QML method. Second, Bai and Li (2014) make restrictive assumptions on the idiosyncratic
errors, that is, the errors are assumed to be identically and independently distributed over time
and uncorrelated over the cross section. In this paper we relax them and allow for general het-
eroskedasticiy and correlation to the idiosyncratic errors. Our theoretical analysis indicates that
the QML estimator has five bias terms. Among these five terms, three terms can be found in Bai
(2009) and Moon and Weidner (2017) in different formulas. The other two terms are new in the
literature. We find that one bias term is related with the skewness of errors, and the other arises
because the lagged dependent variable does not include ht as factors. Furthermore, we discuss
the estimation of the biases and the limiting variances under two interchangeable assumptions,
which is also non-trivial because one may encounter a similar long-run variance estimation issue.
Third, the endogeneity is inherited in Bai and Li (2014) through their factor model structure (i.e.,
endogeneity always exists). But our specification is more flexible on this. To illustrate this point,
consider model (3.1) of Bai and Li (2014).

Yit = αi + X′itβ + κ′i gt + eit,
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Xit = νi + ψ′i gt + γ′iht + vit.

Under Bai and Li’s specification, both the X equation and the Y equation share the same factors
(gt). So the endogeneity is always present in their model. One consequence of their specification
is that the relationship of gt and ht is no longer important. In our model specification, we only
assume that the explanatory variables contain the factors ht. The relationship of gt and ht is left
unspecified. It is possible that gt is independent with ht, or it is possible that gt and ht are highly
correlated. Our flexible specification on factors allows us to test an interesting issue: whether
the classical estimation methods for panel data models is valid in the presence of domestic and
foreign shocks. In Section 6, we perform this work to propose a statistic based on validity of the
Anderson and Hsiao’s (1981, 1982) instrumental variable, which lays the base for the popular
Arellano and Bond’s (1990) GMM method. As can be seen there, that test is a direct benefit from
our flexible specification on the factors of the Y and X equations. In some particular applications,
the relationship of these two types of shocks are also of interest.

3 Quasi likelihood function

Before formally presenting the model, it is necessary to define some notations. We use ȧt to
denote at − 1

T ∑T
t=1 at for any vector at, use Muv to denote 1

T ∑T
t=1 u̇tv̇′t, and use ‖ · ‖ to denote the

Frobenius norm, i.e., for any matrix A, ‖A‖ =
√

tr(A′A).
We first write model (2.1)-(2.2) in a matrix form, to make it more convenient for the subse-

quent analysis. Let ft = (g′t, h′t)
′, µi = (αi, ν′i )

′, εit = (eit, v′it)
′ and

Λi =

[
κi 0r1×k

0r2×1 γi

]
,
[

Yit − ρYit−1 − X′itβ
Xit

]
=

[
1 −β′

0k×1 Ik

]
︸ ︷︷ ︸

B

[
Yit − ρYit−1

Xit

]
︸ ︷︷ ︸

zit(ρ)

= Bzit(ρ),

with B and zit(ρ) implicitly defined above. Then model (2.1)-(2.2) can be written as

Bzit(ρ) = µi + Λ′i ft + εit. (3.1)

Let zt(ρ) = (z1t(ρ)
′, z2t(ρ)′, . . . , zNt(ρ)

′)′, Λ = (Λ1, Λ2, . . . , ΛN)
′, µ = (µ′1, µ′2, . . . , µ′N)

′, and εt is
similarly defined. Then we can rewrite (3.1) as

Bzt(ρ) = µ + Λ ft + εt. (3.2)

with B = IN ⊗ B.
Suppose that (i) ft is gaussian with mean zero and variance Σ f f , and is independent with εis

for all i, t and s; (ii) εit is independently and identically distributed over t and independent over
i; (iii) eit is independent with vit for all i and t; (iv) the loadings Λ are nonrandom. With these
assumptions, we have var(Λ ft + εt) = ΛΣ f f Λ′ + Φ , Σzz with Φ = var(εt). We therefore can
write out the likelihood function as

L∗(θ) = − 1
2N

ln |Σzz| −
1

2NT

T

∑
t=1

[
Bzt(ρ)− µ

]′
Σ−1

zz

[
Bzt(ρ)− µ

]
,
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where θ = (ψ, Λ, Φ, Σ f f ) and ψ = (ρ, β′)′. Given B and Σzz, it is easy to see that µ maximizes
the above likelihood function at µ = B 1

T ∑T
t=1 zt(ρ). Substituting the above formula into the

likelihood function, we have

L(θ) = − 1
2N

ln |Σzz| −
1

2N
tr
[
BMzz(ρ)B′Σ−1

zz

]
, (3.3)

with Mzz(ρ) = 1
T ∑T

t=1 żt(ρ)żt(ρ)′. Assumptions (i)-(iv) are restrictive in applications, and are
relaxed to a large extent in the next section. But we still use (3.3) to motivate our estimation
method. The QML estimator is therefore defined as

θ̂ = argmax
θ†=(ψ†,Λ†,Φ†,Σ†

f f )∈Θ
L(θ†)

where θ† is the input arguments and Θ is the parameters space, which satisfy the normalization
restrictions and Assumption E below. The first-order conditions with respect to free parameters
are given in Appendix A.

We end this section with some discussions on the identification issue. Although the regression
coefficient ψ is identifiable, the factors and factor loadings are not, which is well known in factor
models, see, e.g., Bai and Li (2012). A notable feature of the current model is the presence of zero
elements in Λ, which precludes some rotation possibilities. As a result, the needed number of
restrictions for full identification is r2

1 + r2
2 instead of (r1 + r2)2. In this paper, we only impose the

following (r2
1 + r1 + r2

2 + r2)/2 normalization restrictions:

Σ̂gg = Mgg =
1
T

T

∑
t=1

ġt ġ′t, Σ̂hh = Mhh =
1
T

T

∑
t=1

ḣtḣ′t.

These restrictions would facilitate the theoretical analysis, and are not enough for full identifica-
tion. In addition, these restrictions do not change the maximum value of objective function, so
can be viewed as the loose ones. A direct implication is that these restrictions can be ignored in
the computation method of Section 7.

4 Assumptions

We make the following assumptions. Let c and C be two generic constants, which are not neces-
sarily the same at each appearance.

Assumption A. The r-dimensional factors ft = (g′t, h′t)
′ is a zero-mean covariance stationary

process with absolute summable autocorrelation coefficients, supt E(‖ ft‖4) < C, and is indepen-
dent with εis = (eis, v′is)

′ for each i, t and s.
Assumption B. The factor loadings Λi are nonrandom, such that
(B.1) ‖Λj‖ ≤ C for all j = 1, · · · , N.
(B.2) The limit lim

N→∞
N−1Λ′Λ is an r× r positive definite matrix.

Assumption C. The idiosyncratic error εit = (eit, v′it)
′ satisfies supi,t E‖εit‖16 ≤ C, and the

following conditions:
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(C.1) et = (e1t, . . . , eNt)
′ is a martingale difference sequence with respect to the adaptive filtra-

tion Ft−1 = σ(e1, e2, . . . , et−1). Let τij,t = E(eitejt), there exists a sequence of fixed constants
{τij}∞

j=1 for each given i such that ∑N
j=1 τij < C and maxt |τij,t| ≤ τij.

(C.2) eit is independent with vjs for all i, j, t and s.
(C.3) Let ξij,t = E(vitv′jt) and ζi,ts = E(vitv′is). For each i and t, there exist positive sequences

{ξij}∞
j=1 and {ζts}∞

s=1 such that ∑N
j=1 ξij < ∞ and ∑T

s=1 ‖ζts‖ < ∞ with maxt ‖ξij,t‖ ≤ ξij and
maxi ‖ζi,ts‖ ≤ ζts.

(C.4) c ≤ τmin(Φj) ≤ τmax(Φj) for each j, where Φj = E(εjtε
′
jt) with εjt = (ejt, v′jt)

′, and
τmin(Φj) and τmax(Φj) denote the smallest and largest eigenvalues of Φj, respectively.

(C.5) Moreover,

(a)
1

NT

N

∑
i,j=1

T

∑
t,s=1
‖E(εitε

′
js)‖ ≤ C,

(b)
1
T

T

∑
t,s=1
|cov(eitejt, eisejs)| ≤ C, f or any i and j,

(c)
1
T

T

∑
t,s=1

max
1≤p,p′,q,q′≤k

(
|cov(vit,pvjt,q, vis,p′vjs,q′ |

)
≤ C, f or any i and j

(d)
1

N2T

N

∑
i,j,i′,j′=1

T

∑
t,s=1
|cov(eitejt, ei′sej′s)| ≤ C,

(e)
1

N2T

N

∑
i,j,i′,j′=1

T

∑
t,s=1

max
1≤p,p′,q,q′≤k

(
|cov(vit,pvjs,q, vi′s,p′vj′s,q′)|

)
≤ C,

( f )
1

NT2

N

∑
i,j=1

T

∑
t,s,t′,s′=1

∣∣∣cov
(

eiteit−l(e2
is − σ2

i ), ejt′ejt′−l(e2
js′ − σ2

j )
)∣∣∣ ≤ C, for each l.

Assumption D. For the regression coefficients, we assume that |ρ| < 1 and ‖β‖ ≤ C.
Assumption E. The variances Φi for all i and Σ f f = E( ft f ′t ) are estimated in a compact set,

i.e. all the eigenvalues of Φ̂i and Σ̂ f f are in an interval [C−1, C].
Assumption F. Let α = (α1, α2, . . . , αN)

′ and K = (κ1, κ2, . . . , κN)
′. Define Bt and Ut as

Bt =
α

1− ρ
+K

∞

∑
τ=0

ρτgt−τ +
∞

∑
τ=0

ρτXt−τ, Ut =
∞

∑
τ=0

ρτet−τ,

The following two weak convergences hold:

1√
NT

T

∑
t=1
Q̃′tet

d−−→ N(0, Va),
1√
NT

T

∑
t=1

U′t−1Σ−1
ee et

d−−→ N(0, Vb),

with Va = plimN,T→∞
1

NT ∑T
t=1 Q̃′tE(ete′t)Q̃t and Vb = plimN,T→∞U′t−1Σ−1

ee E(ete′t)Σ
−1
ee Ut−1, where

Q̃t = MK(Q̃t − ∑T
s=1 πstQ̃s), πst = ġ′s(Ġ′Ġ)−1 ġt, MK = Σ−1

ee − Σ−1
ee K(K ′Σ−1

ee K)−1K ′Σ−1
ee , and

Q̃t = (Ḃt−1, Ẋt) with Ẋt = [Ẋ1t, Ẋ2t, . . . , XNt]
′.
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Assumption A is regarding factors. The randomness assumption on factors is different from
the existing fixed-valued assumption in the QML studies such as Bai and Li (2012). The random-
ness is motivated by the dynamics of our model. Similar assumptions are made in a number
of related studies, such as Pesaran (2006), Doz, Giannone and Reichlin (2012), etc. Stationarity
assumption is largely for theoretical analysis and can be relaxed to some extent. Such an assump-
tion precludes some practically interesting cases, for example, the factors are integrated process,
see Bai, Kao and Ng (2009) and Kapetanios et al. (2011). The current paper confines the analysis
on the stationary case and leaves the nonstationary case as a future work. Assumption B is about
factor loadings. It assumes that the loadings are fixed values. Assumption B.2 precludes the
possibility of degenerate expression of factor structure.

Assumption C is about the idiosyncratic errors, which extends the counterpart of Bai and Li
(2014) to allow general weak correlations and heteroskedasticities over two dimensions. Due to
the presence of the lagged dependent variable, the serial correlation of eit is precluded by As-
sumption C.1. But it permits the cross-sectional correlation and heteroskedasticity. Assumption
C.2 postulates that the idiosyncratic part of the regressors are exogenous. This assumption is nec-
essary for the consistent estimation of parameters in the proposed model. Assumption C.3 allows
the correlations and heteroskedasticities in the idiosyncratic errors of regressors. Assumption C.4
assumes that the variances of idiosyncratic errors are bonded away from zero. This assumption
is standard. Note that with Assumptions C.1, C.2 and C.3, it is easy to verify that τmax(Φj) is
uniformly bounded for each j. Assumption C.5 impose some moment conditions. These moment
conditions implicitly further restrict the correlation strength of the errors, and are necessary for
theoretical analysis.

Assumption D is regarding the regression coefficients. This assumption is standard in the
econometric literature. Assumption E assumes that partial parameters are estimated in a compact
set, which is often made when dealing with highly nonlinear objective functions. The likelihood
function (3.3) is highly nonlinear. Assumption F provides two weak convergences of partial sum,
which are used to derive the limiting distribution of the QML estimator. We implicitly use the
martingale difference assumption to derive the limiting variances.

5 Asymptotic properties

This section presents the asymptotic results of the QML estimator. We first provide the consis-
tency result in the following proposition.

Proposition 5.1 Let θ̂ = (ρ̂, β̂, Λ̂, Ψ̂) be the solution obtained by maximizing (3.2). Under Assumptions
A-E, we have

ρ̂− ρ
p−→ 0, β̂− β

p−→ 0,

1
N

N

∑
i=1

(
‖κ̂i − R1κi‖2 + ‖γ̂i − R2γi‖2

) p−→ 0,

1
N

N

∑
i=1

(
|σ̂2

i − σ2
i |2 + ‖Σ̂ii − Σii‖2

) p−→ 0.
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where R1 = M−1
gg E′1ĜΛ̂′Φ̂−1ΛM f f E1 and R2 = M−1

hh E′2ĜΛ̂′Φ̂−1ΛM f f E2, E1 and E2 are implicitly
defined by Ir = [E1, E2], σ2

i = 1
T ∑T

t=1 E(e2
it) and Σii =

1
T ∑T

t=1 E(vitv′it).

Let ΩNT be defined as

ΩNT =
1

NT


tr(Ẏ′−1MKẎ−1MĠ) tr(Ẏ′−1MK Ẋ1MĠ) · · · tr(Ẏ′−1MK Ẋk MĠ)

tr(Ẋ′1MKẎ−1MĠ) tr(Ẋ′1MK Ẋ1MĠ) · · · tr(Ẏ′−1MK Ẋk MĠ)

...
...

. . .
...

tr(Ẋ′k MKẎ−1MĠ) tr(Ẋ′k MK Ẋ1MĠ) · · · tr(Ẋ′k MK Ẋk MĠ)


where Ẏ−1 = [Ẏit−1]N×T, Ẋp = [Ẋitp]N×T for p = 1, 2, . . . , k, MK = Σ−1

ee −Σ−1
ee K(K ′Σ−1

ee K)−1K ′Σ−1
ee

and MĠ = IT − Ġ(Ġ′Ġ)−1Ġ′. Let ∆1,NT, ∆2,NT, ∆3,NT, ∆4,NT and ∆5,NT be all (k + 1)-dimensional
vectors with their pth element defined sequentially as

∆1,p,NT =


1
N tr
[
(Ġ′Ġ)−1Ġ′E(e′Σ−1

ee e)MĠẎ′−1Σ−1
ee K(K ′Σ−1

ee K)−1
]

if p = 1;

1
N tr
[
(Ġ′Ġ)−1Ġ′E(e′Σ−1

ee e)MĠẊ′p−1Σ−1
ee K(K ′Σ−1

ee K)−1
]

if p > 1;

∆2,p,NT =


1
T tr
[
(K ′Σ−1

ee K)−1K ′Σ−1
ee E(ee′)MKẎ−1Ġ(Ġ′Ġ)−1

]
if p = 1;

1
T tr
[
(K ′Σ−1

ee K)−1K ′Σ−1
ee E(ee′)MK Ẋp−1Ġ(Ġ′Ġ)−1

]
if p > 1;

∆3,p,NT =


1

NT tr
[
Ẏ′−1MKΣ−1

ee LMĠ

]
if p = 1;

1
NT tr

[
Ẋ′p−1MKΣ−1

ee LMĠ

]
if p > 1;

∆4,p,NT =

 tr
[
(Ḟ′ Ḟ)−1Ḟ′Ẏ′−1Σ−1

ee KE′1G
]

if p = 1;

0 otherwise

∆5,p,NT =

 1
N tr
[

PG◦E(U′−1Σ−1
ee e)

]
if p = 1;

0 otherwise

where L = [E(e3
it)]N×T and PG◦ = G◦(G◦′G◦)−1G◦′ with G◦ = [1T, G] and 1T is the T-dimensional

vector with all its elements equal to 1.
With the above notations, we have the following theorem on the asymptotic representation of

the QML estimator.

Theorem 5.1 Under Assumptions A-E, as N, T → ∞, we have

ΩNT(ψ̂− ψ) =
1

NT

T

∑
t=1

[
Ḃ′t−1MK(et −∑T

s=1 πstes) + U′t−1Σ−1
ee et

Ẋ′t MK(et −∑T
s=1 πstes)

]

− 1
T

∆1,NT −
1
N

∆2,NT −
1
T

∆3,NT +
1
N

∆4,NT −
1
T

∆5,NT + Op(δ
−3
NT) + op(‖ψ̂− ψ‖).

where Bt, πst, MK , Ut, Q̃t, and Q̃t are defined in Assumption F. The above expression can be alternatively
written as

ΩNT(ψ̂− ψ) =
1

NT

T

∑
t=1
Q̃′tet +

1
NT

T

∑
t=1

U′t−1Σ−1
ee et`k+1

9



− 1
T

∆1,NT −
1
N

∆2,NT −
1
T

∆3,NT +
1
N

∆4,NT −
1
T

∆5,NT + Op(δ
−3
NT) + op(‖ψ̂− ψ‖),

where `k+1 is the first column of the (k + 1)-dimensional identity matrix.

Theorems 5.1 presents the asymptotic representation of the QML estimator. The QML estima-
tor has five bias terms. The first bias term 1

T ∆1,NT arises from the temporal heteroskedasticity­.
If the errors are homoskedastic over the time, the first term is gone. The second term 1

N ∆2,NT

is related to the cross sectional correlation. If the errors are uncorrelated over cross section, the
second term disappears. Since we estimate the cross sectional heteroskedasticity simultaneously
with other parameters, the QML estimator is immune to the bias arising from this heteroskedas-
ticity. The first two bias terms can be found in Bai (2009) and Moon and Weidner (2017). However,
our bias formulas are different from theirs because our formulas are heteroscedasticity-adjusted.
The third term 1

T ∆3,NT is Op(
1
T ), which is due to the non-zero skewness of errors. Note that

we have two sets of cross sectional incidental parameters, the factor loadings and cross sectional
heteroskedasticity. The asymptotic representation of the former estimators is a linear expression
of errors and the leading term of the latter estimators involves a quadratic form of errors. The
interactions of the estimators of these two types give rise to the skewness of errors. If eit is strictly
stationary over time, E(e3

it) is a constant over t for each i and the matrix L can be written as a1′T
for some N-dimensional vector a. Since 1′T MĠŻ′ = 0 for Z = Y−1 or Xp. So this term disappears
in this special case. The fourth term 1

N ∆4,NT arises because Ẏ−1 does not have ht as the factors.
Note that Xp has ht as factors. It can be shown, due to the fact Ĝ12 = Op(

1
N2 ) where Ĝ12 is

the r1 × r2 upper-right subblock of Ĝ = (Σ̂−1
f f + Λ̂′Φ̂−1Λ̂)−1, that ∆4,NT = O( 1

N ), which implies
1
N Ω−1

NT∆4,NT = O( 1
N2 ), a term negligible under N/T → c∗ ∈ (0, ∞). So the regressor Xp does not

cause this bias term. The last term is due to the presence of the predetermined regressor Yit−1

and the within-group transformation. If the interactive effects is absent, this term is equal to
tr[PTE(U′−1Σ−1

ee e)] where PT = 1
T1T1

′
T, a result which has been found in classical dynamic panel

data studies, see Alvarez and Arellano (2003). The same bias term can be found in Moon and
Weidner (2017)

Theorem 5.2 Under Assumptions A-F, as N, T → ∞ and N/T → c∗ ∈ (0, ∞), we have
√

NT
(

ψ̂−ψ∗+Ω−1
NT

[ 1
T

∆1,NT +
1
N

∆2,NT +
1
T

∆3,NT−
1
N

∆4,NT +
1
T

∆5,NT

])
d−−→ N

(
0, Ω

−1
Ω̃Ω

−1
)

,

where Ω = lim
N,T→∞

ΩNT and Ω̃ = plim
N,T→∞

1
NT ∑T

t=1Q′tE(ete′t)Qt with Qt = MK(Wt −∑T
s=1 πstWs) and

Wt = [Ẏt−1, Ẋt].

Theorems 5.1 and 5.2 regard to our dynamic panel data model. If the model is static, we can
show that the bias terms ∆4,NT and ∆5,NT would disappear from the asymptotic representation.
This gives the following asymptotic results on the QML estimator for the static panel data model.

Corollary 5.1 Suppose that the model is Yit = αi + X′itβ + κ′i gt + eit in (2.1). Under Assumptions A-F,
as N, T → ∞, we have

Ω?
NT(β̂− β) =

1
NT

T

∑
t=1

Ẋ′t MK(et−
T

∑
s=1

πstes)−
1
T

∆?
1,NT−

1
N

∆?
2,NT−

1
T

∆?
3,NT +Op(δ

−3
NT)+ op(‖ψ̂−ψ‖),

­The serial correlation is precluded by Assumption C.1 due to the presence of lagged dependent variable.
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where Ω?
NT is the lower right k × k submatrix of ΩNT and ∆?

1 , ∆?
2 and ∆?

3 are the lower k-dimensional
subvectors of ∆1, ∆2 and ∆3, respectively. The above asymptotic representation implies

√
NT
(

β̂− β + Ω?−1
NT

[ 1
T

∆?
1,NT +

1
N

∆?
2,NT +

1
T

∆?
3,NT

])
d−−→ N

(
0, Ω

?−1
Ω̃?Ω

?−1
)

,

where Ω̃? = plim
N,T→∞

1
NT ∑T

t=1 X ′t E(ete′t)Xt with Xt = MK(Ẋt −∑T
s=1 πstẊs).

Theorems 5.1 and 5.2 and Corollary 5.1 are derived under the assumptions to allow general
correlations and heteroskedasticities structure of the idiosyncratic errors. These assumptions are
very appealing in practical applications, however, it generates a nontrivial issue on consistent
estimation of the biases and the limiting variance matrices. For example, the second bias term ∆2

involves 1
NT ∑N

i=1 ∑N
j=1

1
σ2

i σ2
j
κiκj ∑T

t=1 E(eitejt), which cannot be consistently estimated by the plug-

in estimator 1
NT ∑N

i=1 ∑N
j=1

1
σ̂2

i σ̂2
j
κ̂iκ̂j ∑T

t=1 êit êjt. As remarked in Bai and Ng (2006), this problem is

analogous to inconsistency of the unweighted sum of sample autocovariances as a long run vari-
ance estimator in the time series context. The widely-used kernel method in time series, which
puts small weight on distant correlations, is inapplicable to estimation of the cross-sectional cor-
relations since there is no natural ordering on the cross sectional units. Similar issue also exists
in estimation of the covariance matrix Ω̃. To deal with this issue, we further make interchange-
able Assumptions G and G′. We emphasize that Assumptions G and G′ are only needed for the
statistical inference.

Assumption G: eit is uncorrelated with ejt for j 6= i.
Assumption G′: et is a strictly stationary process.
Assumption G assumes no correlations over cross section. As pointed out by Bai and Ng

(2006), this assumption is not especially restrictive in the presence of factor structure since much
of the cross-correlations is presumably captured by the common factors. Under this assumption,
we only need to estimate the heteroskedasticity parameters over cross section and time, as well as
the skewness of errors. Alternatively, we can assume Assumption G′ and estimate the biases and
the covariance matrices. Bai and Ng (2006) make this assumption and propose the cross-section
heteroskedastic autocorrelation consistent (CS-HAC) estimator for the limiting covariance matrix
in a factor-augmented regression model. The intuition is as follows. With the strictly stationarity
assumption, the cross-sectional correlation for each (i, j) pair can be consistently estimated by the
observations over time. The estimation precision is proportional to the time periods T. Suppose
that we only choose partial cross sectional units to construct the estimator, say only n units. As
long as n is carefully chosen to be divergent not so fast, the total estimation errors will be under
control for large T.

Let θ̂ = (ψ̂, Λ̂, M̂ f f , Φ̂) be the QML estimators, which are obtained via the ECM algorithm
stated below. The factor ḟt can be consistently estimated (up to a rotation) by f̂t = Σ̂ f f Λ̂′Σ̂−1

zz B̂żt(ρ̂)

for each t, where Σ̂zz = Λ̂M̂ f f Λ̂′+ Φ̂ and B̂ is the estimator for B by replacing β with β̂. Once F̂ is
obtained, the estimator of Ġ (i.e., Ĝ) can be easily constructed by picking out the first r1 columns.
Let M̂K = Σ̂−1

ee − Σ̂−1
ee K̂(K̂ ′Σ̂−1

ee K̂)−1K̂ ′Σ̂−1
ee , where Σ̂ee = diag(σ̂2

1 , . . . , σ̂2
N) and K̂ is implicitly

given in Λ̂ and MĜ = IT − Ĝ(Ĝ′Ĝ)−1Ĝ′. Furthermore, let êit = Ẏit − ρ̂Ẏit−1 − Ẋ′it β̂− κ̂′i ĝt. With
the above estimators, we now discuss the estimation of ∆1,NT, . . . , ∆5,NT. Basically, the estimators
for these five vectors are based on the plug-in method except for some cases in which long-run
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variance estimation issue exists. We only elaborate the estimator of the first elements of these
vectors. The estimators of the remaining elements either are zeros or simply replace Y−1 with
Xp−1 according to the bias formula given above. For ∆1,1,NT, it can be estimated by

∆̂1,1,NT = tr
[
(Ĝ′Ĝ)−1Ĝ′diag

( 1
N

N

∑
i=1

1
σ̂2

i
ê2

i1, . . . ,
1
N

N

∑
i=1

1
σ̂2

i
ê2

iT

)
MĜẎ′−1Σ̂−1

ee K̂(K̂ ′Σ̂−1
ee K̂)−1

]
.

For ∆2,1,NT, it is equal to zero under Assumption G, and can be estimated under Assumption G′

by

∆̂2,1,NT = tr
[( 1

N
K̂ ′Σ̂−1

ee K̂
)−1 1

n

n

∑
i=1

n

∑
j=1

1
σ̂2

i σ̂2
j

κ̂i
1
T

T

∑
t=1

êit êjt

(
Ẏ′j,−1− κ̂j(K̂

′Σ̂−1
ee K̂)−1K̂ ′Σ̂−1

ee Ẏ−1

)
Ĝ(Ĝ′Ĝ)−1

]
For ∆3,1,NT, it can be estimated by 1

NT tr
[
Ẏ′−1MK̂ Σ̂−1

ee L̂MĜ

]
with L̂ = [ê3

it]N×T under Assumption G,
and is zero under Assumption G′. For ∆4,1,NT, it can be estimated by tr

[
(F̂′ F̂)−1F̂′Ẏ′−1Σ̂−1

ee K̂E′1Ĝ
]
.

For ∆5,1,NT, it can be estimated by tr[PĜ◦ thrn∗( Ĵ)], where thrγ(·) is the thresholding operation
which sets the (t, s)th element of its arguments to zero if |t− s| > n∗, and Ĝ◦ = [1T, Ĝ] and Ĵ
defined as

Ĵ =
1
N



0 0 0 · · · 0

∑N
i=1

1
σ̂2

i
ê2

i1 0 0 · · · 0

ρ̂ ∑N
i=1

1
σ̂2

i
ê2

i1 ∑N
i=1

1
σ̂2

i
ê2

i2 0 · · · 0

...
...

...
. . .

...

ρ̂T−2 ∑N
i=1

1
σ̂2

i
ê2

i1 ρ̂T−3 ∑N
i=1

1
σ̂2

i
ê2

i2 ρ̂T−4 ∑N
i=1

1
σ̂2

i
ê2

i3 · · · 0


.

The matrix Ω can be readily estimated by replacing MK and MĠ in ΩNT with MK̂ and MĜ,
respectively. The matrix Ω̃ can be estimated by 1

NT ∑N
i=1 ∑T

t=1 Q̂itQ̂′it ê2
it under Assumption G,

and 1
nT ∑n

i=1 ∑n
j=1 ∑T

t=1 Q̂itQ̂′jt 1
T ∑T

s=1 êis êjs under Assumption G′, where Q̂it is the transpose of the

i-th row of Q̂t, and Q̂t is the matrix obtained by replacing MK and πst in Qt with MK̂ and
π̂st = ĝ′t(Ĝ

′Ĝ)−1 ĝs, respectively.

We have the following theorem shows consistency of the above estimators.

Theorem 5.3 Under Assumptions A-F, together with Assumption G or G′, if n→ ∞ and n2

min(N,T) → 0,

we have ∆̂p,NT − ∆p,NT = op(1) for p = 1, 2, . . . , 4 and Ω̂NT −Ω = op(1) and ̂̃ΩNT − Ω̃ = op(1). In
addition, if n∗ → ∞ and n∗2

min(N,T) → 0, we have ∆̂5,NT − ∆5,NT = op(1).

6 Hypothesis testing

The FDI literature widely employs traditional dynamic panel data models to investigate the de-
terminants of the FDI locations, see, for example, Cole, Elliott and Zhang (2009), Cheng and
Kwan (2000), etc. It is well documented in the econometric literature that dynamic panel data
models may suffer the celebrated incidental parameter issue of Neyman and Scott (1948). An-
derson and Hsiao (1981, 1982) propose an IV method, in which one first differences the model
over time and then use yit−2 as the instrument to the endogenous regressor. Arellano and Bond

12



(1991) generalize Anderson and Hasio’s idea to the difference GMM. In the current framework,
since we consider a large-T scenario, the GMM would entail the so-called many moments issue,
see Alvarez and Arellano (2003) and Han and Phillips (2006). But one can still use Anderson and
Hsiao’s IV method in large-T setup. This evokes us to study the hypothesis testing on whether
the IV proposed in Anderson and Hsiao’s method is valid in our heterogeneous shocks model.

Consider the Y equation,

Yit = αi + ρYit−1 + X′itβ + κ′i gt + eit.

After first differencing, we obtain

∆Yit = ρ∆Yit−1 + ∆X′itβ + κ′i∆gt + ∆eit.

For Anderson and Hsiao’s method, one uses Yit−2 and ∆Xit as the instruments of ∆Yit−1 and ∆Xit,
respectively. In our heterogeneous shocks model, the errors in the Y equation have an additional
term κ′i gt. However, if ∆gt is uncorrelated with ∆ht and fρ

t−2, where fρ
t is the factors contained in

Yit, it is easy to verify that the orthogonal conditions in Anderson and Hsiao’s method continue
to hold and their method would deliver a consistent estimator.

Let Pt = (∆h′t, fρ′
t−2)

′. We are interested in testing E(∆gtP ′t) = 0, which is equivalent to
E(Pt ⊗ ∆gt) = 0. Note that the equation E(∆gtP ′t) = 0 involves the unobserved factors, which
can only be identified up to a rotation. But we emphasize that E(∆gtP ′t) = 0 does not suffer
the rotational indeterminacy and is well defined. This is due to the robustness of zero matrix to
rotational transformation since R10r1×r2 = 0r1×r2 and 0r1×r2R2 = 0r1×r2 , where R1 and R2 are
two invertible r1 × r1 and r2 × r2 matrices.

To construct the statistic, a nature way is to replace ∆gt and Pt with their estimates, i.e., ∆̂gt
and P̂t. Unfortunately, since ∆̂gt and P̂t are non-zeros, they both suffer rotational indeterminacy.
To address this issue, we consider the following sum of the square of canonical correlations
between ∆gt and Pt, which is defined as

C = Ttr
[
[E(∆gt∆g′t)]

−1E(∆gtP ′t)[E(PtP ′t)]−1E(Pt∆g′t)
]
.

An advantage of the above quantity is its immunity to the rotational indeterminacy. Our statistic
is based on the sample analog of C, i.e.,

Cs = Ttr
[( T

∑
t=3

∆̂gt∆̂g
′
t

)−1( T

∑
t=3

∆̂gtP̂
′
t

)( T

∑
t=3
P̂tP̂ ′t

)−1( T

∑
t=3
P̂t∆̂g

′
t

)]
, (6.1)

where ∆̂gt and ∆̂ht can be obtained from the estimators ĝt and ĥt. The latter two estimators can
be directly obtained in the ECM algorithm stated in Section 7. The estimators of the factors fρ

t , f̂ρ
t ,

can be obtained by invoking the ML estimation method proposed by Bai and Li (2012). Once the
above estimators are obtained, the statistic Cs can be constructed by the formula (6.1). We have
the following theorem on the asymptotic properties of Cs.

Theorem 6.1 Under Assumptions A-E, as N, T → ∞ and
√

N/T → 0, then
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• under the null hypothesis H0 : E(∆gtP ′t) = 0, if ft = [g′t, h′t]
′ is an identical and independently

distributed process, we have

Cs
d−−→ 3

2
χ2

a(r1r2) + (1− ρ)χ2
b(r

2
1 + r1r2);

where χ2
a(r1r2) and χ2

b(r
2
1 + r1r2) are two independent chi-square distributed random variables with

the degrees of freedom r1r2 and r2
1 + r1r2, respectively.

• under the alternative hypothesis H1 : E(∆gtP ′t) 6= 0, we have Cs −→ ∞.

Theorem 6.1 implies that the statistic Cs converges in distribution to a weighted sum of chi-
square distribution. Similar asymptotic results appear in likelihood ratio test on non-nested
hypothesis, see Vuong (1989). The critical values for Cs can be obtained by the Monte Carlo
method. More specifically, we generate r2

1 + 2r1r2 standard normal variables. For each variable,
we calculate its squared value. Next, we take a weighted sum of these squared values with the
weight 1.5 for the first r1r2 values and the weight 1− ρ̂ for the remaining values, where ρ̂ is the
QML estimator for ρ. We repeat these procedures with 1000 repetitions and sort the 1000 values
with descending order. Then the critical values for 1%, 5% and 10% significance level are the
10th, 50th, 100th largest ones, respectively.

We note that the proposed test is only applicable under the dynamic scenario. For a static
panel data model, one rarely uses the first differencing but within group transformation to elim-
inate the individual fixed effects. We can readily show that if E(gth′t) = 0, the traditional within
group method would deliver the consistent estimation. This motivates us to test E(gth′t) = 0.
Following the above idea, we propose the following statistic in static panel data model

C̃s = Ttr
[
Σ̂hgΣ̂−1

gg Σ̂ghΣ̂−1
hh

]
,

where Σ̂gg, Σ̂hh, Σ̂gh and Σ̂hg are implicitly defined by Σ̂ f f = [Σ̂gg, Σ̂gh | Σ̂hg, Σ̂hh] and Σ̂ f f is directly
delivered by the ECM algorithm below. The following theorem provides the asymptotic results
of C̃s, whose proof is similar as (actually easier than) that of Theorem 5.2 and is therefore omitted.

Theorem 6.2 Under Assumptions A-E, as N, T → ∞ and
√

N/T → 0, then

• under the null hypothesis H0 : E(gth′t) = 0, if ft = [g′t, h′t]
′ is an identical and independently

distributed process, we have

C̃s
d−−→ χ2(r1r2);

• under the alternative hypothesis H1 : E(gth′t) 6= 0, we have C̃s −→ ∞.

7 Computing method

In this section we discuss the computation method. The QML estimators can be calculated via the
ECM algorithm. Let θ(k) = (ψ(k), Λ(k), Φ(k), Σ(k)

f f ) be the estimated value at the kth iteration, where
Σ f f is the variance of ft = (g′t, h′t)

′. In our ECM algorithm, we do not impose the identification
conditions. One reason is that the identification conditions are imposed to uniquely determine

14



the underlying parameters. Hence, it has no effects on the minimum value of the likelihood
function. Another reason is that once we impose the restrictions such as Σgg = Ir1 and Σhh = Ir2 ,
the elements of Σgh are implicitly restricted in [−1, 1]. But such restrictions cannot be guaranteed
in the ECM iterating formulas.

Let G(k) =
[
(Σ(k)

f f )
−1 + Λ(k)′(Φ(k))−1Λ(k)

]−1
. We first calculate

1
T

T

∑
t=1

E( ft f ′t |Z, θ(k)) = G(k) + G(k)Λ(k)′(Φ(k))−1B(k) 1
T

T

∑
t=1

zt(ρ
(k))zt(ρ

(k))′B(k)′(Φ(k))−1Λ(k)G(k),

1
T

T

∑
t=1

E(Bzt(ρ) f ′t |Z, θ(k)) = B(k) 1
T

T

∑
t=1

zt(ρ
(k))zt(ρ

(k))′B(k)′(Φ(k))−1Λ(k)G(k),

where B(k) is B when β = β(k). Once we obtain 1
T ∑T

t=1 E( ft f ′t |Z, θ(k)), matrices 1
T ∑T

t=1 E(gtg′t|Z, θ(k)),
1
T ∑T

t=1 E(gth′t|Z, θ(k)) and 1
T ∑T

t=1 E(hth′t|Z, θ(k)) are all known. K and Γ are updated according to

K(k+1) = Υ(k)
1

[ 1
T

T

∑
t=1

E(gtg′t|Z, θ(k))
]−1

, and Γ(k+1) = Υ(k)
2

[ 1
T

T

∑
t=1

E(hth′t|Z, θ(k))
]−1

,

where Υ(k)
1 is N × r1, whose ith row is the first r1 subvector of the [(i − 1)(K + 1) + 1]th row

of 1
T ∑T

t=1 E(Bzt(ρ) f ′t |Z, θ(k)); and Υ(k)
2 is NK × r2, which is obtained by deleting the rows of

1
T ∑T

t=1 E(Bzt(ρ) f ′t |Z, θ(k)) corresponding to Υ(k)
1 and the first r1 columns. Once K(k+1) and Γ(k+1)

are calculated, Λ(k+1) is obtained accordingly. We then calculate

Φ(k+1) = Dg

{
B(k) 1

T

T

∑
t=1

zt(ρ
(k))zt(ρ

(k))′B(k)′ + Λ(k+1)
[ 1

T

T

∑
t=1

E( ft f ′t |Z, θ(k))
]
Λ(k+1)′

−Λ(k+1)
[ 1

T

T

∑
t=1

E( ftzt(ρ)
′B′|Z, θ(k))

]
−
[ 1

T

T

∑
t=1

E(Bzt(ρ) f ′t |Z, θ(k))
]
Λ(k+1)′

}
,

ψ(k+1) =
[ N

∑
i=1

T

∑
t=1

1

σ
(k+1)
i

2 ẆitẆ ′it
]−1[ N

∑
i=1

T

∑
t=1

1

σ
(k+1)
i

2 Ẇit(Ẏit − κ
(k+1)′
i g(k)t )

]
,

where Dg(·) denotes the operator which sets the element of the input argument to zero if the
counterpart of Φ is specified to zero; (σ(k+1)

i )2 is the (i− 1)(K + 1) + 1th diagonal element of Φ;

and Ẇit = (Ẏit−1, Ẋ′it)
′. g(k)t is the first r1 subvector of

f (k)t = G(k)Λ(k)′(Φ(k))−1B(k)żt(ρ
(k)).

Finally, the Σ(k+1)
f f is updated by

Σ(k+1)
f f =

1
T

T

∑
t=1

E( ft f ′t |Z, θ(k)). (7.1)

Putting everything together, we obtain θ(k+1) = (ψ(k+1), Λ(k+1), Φ(k+1), Σ(k+1)
f f ). The iteration

goes on until ‖ψ(k+1) − ψ(k)‖ is smaller than some tolerance value. As regard to the initial
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values, we have three choices, that is, the within-group estimator, the GMM estimator, and the PC
estimator of Moon and Weidner (2017). Theoretically, the PC estimator is the best choice because
it is the consistent for the unknown coefficients. However, the main issue related with the PC
initial value is the multiple local maximas (minimas) of the objective function. If the likelihood
objective function has this issue, it is likely that the objective function of the PC method would
have the same one. Hence, if the PC estimator is unfortunate to be the local minima, which
is possible as pointed out by Moon and Weidner (2018), such an initial value would possibly
make the QML estimator the local maxima. For this reason, only using the PC estimator as the
initial value is not enough to guarantee the desirable estimator. We suggest using all the three
estimators as initial values and choose the estimator, if different, that corresponds to the largest
likelihood value, to be the final QML estimator.

8 Simulations

We conduct Monte Carlo simulations to investigate the finite sample performance of the ML
estimators and the proposed Cs test. The underlying data generating process is

Yit = αi + ρYit−1 + Xitβ + κigt + eit,

Xit = νi + γi1ht1 + γi2ht2 + vit.
(8.1)

We set ρ = 0.8 and β = 1. The above specification indicates that r1 = 1 and r2 = 2. The
factor loadings are generated by κi = N(0, 1), γi1 = κi + N(0, 1) and γi2 = 2κi + N(0, 1). The
factors are generated by ht1 = gt + N(0, 1) and ht2 = gt + N(0, 1) with gt drawn from N(0, 1).
Other parameters, such as αi and νi, are generated from N(0, 1). The idiosyncratic errors of X
is generated by A1/2

v EvB1/2
v , where Ev is an N × T matrix with each element being independent

N(0, 1). Av is an N × N Toeplitz matrix whose the first diagonal elements are 1, the second
diagonal elements are 0.48, and the remaining elements are zeros. Bv is defined similarly as Av

except that the second diagonal elements are −0.48. The idiosyncratic errors of the Y equation
(i.e., eit) is generated according to AeEeBe, where Ee is an N× T random matrix with each element
being independent (χ2(2)− 2)/2. To investigate the performance of different data scenarios, we
consider three choices of Ae and Be:

Case One: Ae and Be are both identity matrices.

Case Two: Ae is an N-dimensional diagonal matrix with its i-th diagonal element equal to
0.1 + 1

1−ui
κ2

i ui where ui ∼ U[0.3, 0.7], and Be is an identity matrix.

Case Three: Ae is defined the same as above, and Be is an T-dimensional diagonal matrix
with its s-th diagonal element being 0.1 + 1

1−vs
g2

s vs where vs ∼ U[0.3, 0.7].

The simulations of this section focus on the comparison of the ML and PC methods, where
the PC estimator for the dynamic interactive-effects model is given in Moon and Weidner (2017).
Chudik and Pesaran (2015) propose the CCE method to estimate a dynamic model. Their paper
focuses much on the heterogeneous coefficients. Although it is possible to adapt their method to
the setup of homogeneous coefficient, the asymptotic properties of the CCE estimator are much
unknown. For this reason, we do not include their method for comparison. Throughout the
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simulations, we assume that r1 and r2 are known. Since both the QML and PC methods need to
know the number of factors, such an assumption does not impair the fairness of comparison. In
practice, this assumption is implausible, but the values r1 and r2 can be consistently estimated
by a number of celebrated methods, e.g., Bai and Ng (2002), Onatski (2010), Ahn and Horenstein
(2013). Moreover, as pointed out by Moon and Weidner (2015), the estimation of the regression
coefficients is little affected by the number of factors as long as it is not underestimated.

Tables 1 - 3 present the simulation results on the ML and PC estimators, which are obtained
from 1000 repetitions. There are several points worthy to emphasize. First, the bias issue in the
dynamic models is nontrivial. If ignored, the t-test would suffer severe size distortion. Take ρ

as the example to illustrate. In the sample size of N = 150 and T = 50, the actual coverage
probabilities based on the ML estimator is 37.3% in case one, 70.0% in case two, and 64.4% in
case three, which are far away from the nominal 95% coverage probability. The results based
on the PC estimator exhibit the similar observations. Second, the bias correction formula can
effectively remove the biases of the estimators. In all the combinations of N and T, we see that
the magnitudes of the biases are appreciably reduced. This result is reflected in the performance
of the t-test. As can be seen, the empirical coverage probabilities are much improved. In the
sample when N and T are both large, the empirical probabilities are close to 95%, the nominal
one. Third, the standard deviations of the ML estimator is much smaller than those of the PC
in the presence of cross-sectional heteroskedasticity, which implies that the power of the t-test
based on the ML estimator would be larger than the PC estimator. The result indicates that the
ML estimator should be preferred when the data exhibits heavy heteroskedasticity.

Insert Tables 1 and 3

We next evaluate the empirical sizes and powers of the proposed test. All parameters except
the factors are generated by the same way as the above. The factors are generated by the following
way. First, we generate error ε

f
t = [ε

g
t , εh′

t ]
′, where ε

g
t is drawn independently from N(0, 1) and

εh
t = (εh

t,1, εh
t,2) with εh

t,1 and εh
t,2 being generated by εh

t,1 = c√
T

ε
g
t + N(0, 1) and εh

t,2 = c√
T

ε
g
t + N(0, 1).

Once ε
f
t is obtained, the factors ft are generated by ft =

c√
T

ft−1 + ε
f
t . It is easy to see that when

c = 0, the factor ft satisfies the null hypothesis; if c 6= 0, the factor ft represents the local Pitman
alternative case and can be used to study the power of the test. According to Theorem 6.1,
the final limiting distribution under the null is 1.5χ2

a(2) + 0.2χ2
b(3). We use simulation method

to obtain the 90%, 95% and 99% quantiles of the distribution, which are 7.46, 9.62, and 10.07,
respectively.

Table 4 presents the simulation results of the Cs test, which are obtained by 1000 repetitions.
As seen, the Cs test performs well in all the combinations of N and T. When c = 0, the empirical
sizes of the Cs test are close to the nominal levels. Only when N and T are both relatively small,
say N = 50, T = 50, the Cs has a slight size distortion. However, when the sample size becomes
larger, the size of test improves much. In addition, we see that the Cs test has good power. For
the case c = 3, we see that one has a low chance to make type-II error under 95% nominal level.

Insert Table 4
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9 The Location Determinants of China’s FDI Inflow

9.1 Data and variables

Data
In this study, we employ a balanced panel data covering 29 provinces, autonomous regions

and municipalities (“provinces” henceforth) over a 22-year period from 1993 to 2014. The 29
provinces included in our sample are AnHui, BeiJing, FuJian, GanSu, GuangDong, GuangXi,
GuiZhou, HaiNan, HeBei, HeiLongJiang, HeNan, HuBei, HuNan, JiangSu, JiangXi, JiLin, LiaoN-
ing, NeiMeng, NingXia, QingHai, ShanDong, ShangHai, ShanXi, ShaanXi, SiChuan, TianJin,
XinJiang, YunNan, and ZheJiang, excluding Chongqing and Tibet. We confine our sample pe-
riod from 1993 to 2014 since Chinese FDI inflow increased dramatically from 1993 after Deng
Xiaoping’s South Tour. Moreover, the Asian Financial Crisis and the Subprime Crisis are covered
during this period that creates a typical context with heterogeneous shocks to match our model.
All the data are obtained from the regional database of the National Bureau of Statistics of China.
These data have also been used in previous FDI studies as aggregate level control variables (e.g.
Kang and Lee (2007), Du, Lu and Tao (2008)).

Variable Constructions and Summary Statistics

Dependent variable. To measure the aggregate size of FDI inflow, we use the annual to-
tal investment of Foreign-invested enterprises (FIEs) at province level. All the investment are
converted from US dollars into RMB with time-varying exchange rate and deflated with local
Consumer Price Index (henceforth CPI) taking 2005 as the base year.

Explanatory variables.
Local GDP. According to traditional FDI theory, an incentive for firms seeking to produce

abroad is to access local market of host country. Thus, the greater the local market size, the more
likely it will attract foreign investment. Following Kang and Lee (2007), we include deflated
provincial GDP to proxy for the size of local market, and we expect that it has a positive effect
on FDI.

Infrastructure. The availability and quality of local infrastructure has a positive impact in
attracting FDI, which is a particularly important factor impacting the location decision for firms
engaging in cross-border production sharing (Blude and Molina (2015)). We take the sum of the
length of road and railway over the area and calculate the density of road and railway to measure
the availability of infrastructure in various provinces.

Wage. China is a labor-abundant country. Low labor costs make China an ideal destina-
tion for FDI, especially those taking China as an international fragmented production base and
re-exporting platform. However, the rapid growth rate of wage would make the firms’ cost man-
agement difficult, causing negative effects on attracting FDI. We use the growth rate of logarithm
of the deflated average wage of urban employee to measure this wage cost.

Openness. In the early stage, China initiated the strategies to open up Special Economic
Zones (SEZs), Open Coastal Cities (OCCs), and Economic and Technological Development Zones
(ETDZs) and implement preferential policies towards FDI. Kang and Lee (2007) and Du, Lu and
Tao (2008) find government preferential policies increase significantly the attractiveness of certain
area for foreign investors. Here we add a variable Openness, which is measured by the ratio of
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total import and export over GDP, to control for the effect of these preferential policies.®

Government. As an economy during transition, China’s various levels of governments still
play substantial roles in economic activities. Hence we include Government measured with the
ratio of local government fiscal expenditure over GDP to control for the possible impact. In
existing literature, the expected sign of Government is mixed. A positive argument states that
government spending contributes to aggregate demand (e.g. Blanc-Brude et al. (2014)) and state
budgetary appropriation as a substitute for bank loans provides finance to credit constrained
enterprises. In contrary, the negative argument emphasizes government’s intervention in busi-
ness operation and the induced corruption and unequal competition among different types of
enterprises (e.g., Du, Lu and Tao (2008)).

Labor quality. FDI firms usually have technology and knowledge asset advantages, so they
require better labor quality to adapt their technology and knowledge. Therefore, the abundance
of skilled labor, as a specific resource, could be a local advantage for destination countries to
attract FDI inflows (UNCTAD (1998), Zhang and Markusen (1999)). In the existing literature (e.g.
Noorbakhsh and Paloni (2001), Gao (2005), Du, Lu and Tao (2008)), the percentage of educated
persons is used to indicate the local human resources availability and labor quality. During our
sample period, China also experienced a sharp increase in education level, which may contribute
to its dramatic growth in FDI inflows. Thus, a positive sign of labor quality is expected.

We note that, exchange rate, tariff and taxes are also important FDI determinants affecting
FDI location and magnitude (See Blonigen (2005) for a literature review). However, we study
the FDI location choice across Chinese provinces, which are assumed to face national uniform
exchange rate, tariffs and taxes. Further tariff or tax reduction or exemption in some special areas
as preferential policies has been taken into account in constructing the variable Openness.

Variable definition and the descriptive statistics are summarized in Tables 5 and 6.

Insert Tables 5 and 6

9.2 Empirical results

As the first step, the number of factors r1 and r2, the numbers of the global shocks and the
domestic shocks, need to be determined. On this matter, we have at hand a number of popular
methods to use, e.g. Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013), to
name a few. Existing studies, such as Boivin, Giannoni and Mihov (2009), suggest determining
the number of factors based on economic analysis. In our FDI study, we find that the empirical
results are sensitive to r1, but not sensitive to r2. So we choose the existing methods to estimate r1.
More concretely, we consider three popular methods, i.e., the information criterion (IC) method
of Bai and Ng (2002), the edge distribution (ED) method of Onatski (2010) and the eigenvalue-
ratio (ER) and growth-ratio (GR) methods of Ahn and Horenstein (2013). As regards to the IC
method, as pointed out by Boivin and Ng (2006) and Onatski (2012), it tends to select a relatively

®In Kang and Lee (2007), Du, Lu and Tao (2008), Liu, Lovely and Ondrich (2010), they add dummy variables to
control for the preferential policies. However, in our model, the effect of a time-invariant dummy variable will be
included in the constant. Therefore, we use the openness of local economy, as a result of various preferential policies,
to control for such an effect.
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large number of factors in the limited sample size of real data applications. Li (2018) proposes a
modified IC method by imposing a heavier penalty to avoid the overestimation issue. Since our
sample size is N = 29, T = 22, which is a typical case that Li (2018) considers, we therefore use
her method, instead of the original Bai and Ng’s method. In addition, we note that ED, ER and
GR methods are designed for the approximate factor models. They cannot be directly applied
to the current model. To address this issue, we conduct the following procedure: first assume
r̂1 and estimate the regression coefficients, then calculate the corresponding residuals of the Y
equation, and see whether this assumed number of factors in the residuals is supported by the
ED, ER and GR methods. In all the methods, we set rmax = 4.

The modified IC method and ED methods both suggest r̂1 = 1. The modified IC values are
−0.567 for r1 = 0; −3.726 for r1 = 1; −2.388 for r1 = 2; −0.921 for r1 = 3; and 0.541 for r1 = 4,
which suggest r̂1 = 1 to be the estimated value. The ED method also suggests r1 = 1. But the ER
and GR methods fail to deliver the number of factors, i.e., the estimated number of factors are not
the same as the value assumed a priori. Based on these results, we set r̂1 = 1, which means one
general global shock influencing the source of FDI. We note that one global shock is consistent
with the specification of Kose et al. (2003) in which the authors study global economic circle.
As for r2, we experiment with different values and choose the smallest value r under which the
estimation results are almost the same with those under r + 1¯.

Table 7 presents the empirical results for the five estimation methods, i.e., difference GMM,
system GMM, Anderson and Hsiao’s IV, PC, and QML methods. Retrospectively, the previous
studies generally use the dynamic panel data model to study the FDI locations, so we calculate
the results of difference GMM, system GMM, and Anderson and Hsiao’s IV methods for the
purpose of comparion°. In addition, the PC estimator is a primary competitor of our QML
estimator, so we also include it for consideration. The sixth column to the ninth column of Table
7 are the results from our QML method. The sixth column is the result that we mainly rely on.
The next three columns are used to check the robustness.

From table 7, we can draw the following conclusions. First, the QML method delivers im-
pressive results. As seen in the sixth column, all the regression coefficients have correct signs and
are statistically significant. More specifically, large inward FDI in last period, larger local market,
broader infrastructure stock, lower growth rate of labor cost, a higher level of openness, more
government intervention and better human capital availability attract more FDI. Second, the four
other methods do not give very satisfactory results. For example, all the other methods suggest
positive signs for the coefficient of WAGE. However, we emphasize that for these four methods,
if ignoring those coefficients statistically insignificant, we find that the remaining ones are con-
sistent with what the economic theory predicts. For example, the coefficient of WAGE, albeit
positive in the columns of the second to the fifth, are insignificant. Third, our QML estimation
results have their robustness. Since labor quality is closely related with wage, we delete LABOR
in the eighth column, but find that the coefficients still have correct signs and statistically signif-
icant. In addition, since market, wage and openness are the three primary factors that drive the
volumes of FDI, we consider a small regression with only these three regressors. Again, we find

¯We also use the IC, ED, ER and GR methods to estimate r2. But different methods give different values. The
modified IC method estimates r̂2 = 1. The ED method estimates r̂2 = 2, and both ER and GR methods estimate
r̂2 = 3. However, as shown in Appendix C.2, the empirical results are little affected by this value.

°We use the Stata software to calculate the different GMM and system GMM results.
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that the QML method gives the correct signs of the coefficients in the last column. Furthermore,
we experiment different r2 values and find that the r2 value has very small effect on the final
results. As seen, the results in the seventh column obtained under r2 = 2 is almost the same as
those under r2 = 1. More empirical results under larger r2 values can be found in Appendix C.2.
Fourth, the endoneneity issue does exist in the data. The Cs statistic is 6.11, but the critical values
are 4.87 for 10%, 5.92 for 5%, 8.28 for 1%. So our empirical example emphasizes the necessity to
take account of correlated heterogeneous shocks in FDI study. Finally, the coefficient of GOVERN
from the QML method is strongly positive. But the same coefficient from other methods is either
insignificant (D-GMM, AH, PC), or strongly negative (S-GMM). As pointed out above, the sign
of this coefficient is controversial in the literature. Over this controversy, our empirical results
are inclined to support the positive effects of government activities. There are many reasons
responsible for this estimated result, and the whole mechanism may be complicated. We left the
delicate explanation as a future work.

Insert Table 7

In Appendix C.1, we use the Monte Carlo methods and the bootstrap methods to explore the
effects of the limited sample size. We find that the the bias issue is not pronounced. But the
t-statistics are much affected by the relatively large changes of the standard deviation. However,
except for the regressor LABOR, the remaining coefficients are still significant under the 10%
significance level. Given the results in the eighth column, the main conclusions found in Table 7
are not changed.

10 Conclusion

In this paper we emphasize one source of endogeneity in the existing empirical FDI location stud-
ies. With consideration that qualified IVs are hard to find in general, and they are unavailable
in our application in particular, we take “controlling through estimating” idea in econometric
literature and propose panel data models with heterogeneous shocks to address the endogeneity.
We consider the QML method to estimate the proposed model. The QML method has a striking
advantage that it explicitly takes into account of cross-sectional heteroskedasticity, which is a key
feature in China’s FDI pattern. We investigate the asymptotic properties including asymptotic
representation and limiting distributions. We also propose a new statistic to conduct the hypoth-
esis testing on the presence of endogeneity within the model. The asymptotic properties of the
proposed test is further explored.

We apply our methodology to study the location determinants of China’s FDI inflow, allowing
the FDI inflow subject to a global shock and the local characteristics subject to various domestic
shocks. Results from the conventional linear regression suggest the endogeneity problem does
exist in this study, while results from the QML estimators show that our method, which explicitly
models the endogenous shocks, generate estimation results consistent with the theory.
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Figure 1: China’s FDI Inflow over 1990-2010

Note: the figure presents the value of total inflow of foreign direct investment of China from 1990 to 2010.
The data is from the China’s Statistical Year Books. All numbers are in billion U.S. dollars.
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Figure 2: The 2010 FDI Inflow of 29 Provinces

Note: Figure 2 presents the FDI inflow received by 29 provinces in 2010: AnHui, BeiJing, FuJian, GanSu,
GuangDong, GuangXi, GuiZhou, HaiNan, HeBei, HeiLongJiang, HeNan, HuBei, HuNan, JiangSu, JiangXi,
JiLin, LiaoNing, NeiMeng, NingXia, QingHai, ShanDong, ShangHai, ShanXi, ShaanXi, SiChuan, TianJin,
XinJiang, YunNan, and ZheJiang. The data is from the China’s Statistical Year Books. All numbers are in
billion U.S. dollars.
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Table 4: Rejecting frequency of the Cs test under 1%, 5% and 10% nominal level

N T
c = 0 c = 3 c = 5

10% 5% 1% 10% 5% 1% 10% 5% 1%

50 50 13.6% 6.6% 0.6% 90.3% 83.1% 54.0% 97.5% 97.1% 92.9%
75 50 10.6% 5.4% 0.6% 91.6% 83.3% 54.2% 98.9% 98.9% 96.7%
100 50 10.5% 4.7% 0.4% 91.6% 83.4% 55.1% 99.4% 99.0% 96.9%
125 50 11.0% 5.5% 0.6% 92.1% 85.3% 55.3% 99.8% 99.8% 98.5%
50 75 11.6% 5.7% 0.8% 91.5% 85.2% 61.7% 97.5% 97.4% 96.3%
75 75 11.5% 5.3% 0.7% 91.9% 86.4% 63.7% 99.5% 99.5% 99.2%
100 75 11.1% 5.4% 1.1% 92.8% 86.7% 63.5% 100.0% 100.0% 99.6%
125 75 11.2% 5.8% 1.1% 94.5% 88.1% 63.5% 99.6% 99.5% 98.9%
50 100 9.6% 4.6% 1.0% 92.9% 85.5% 66.3% 98.1% 98.1% 97.3%
75 100 10.5% 5.9% 1.2% 93.5% 88.4% 69.3% 99.2% 99.1% 99.0%
100 100 10.4% 5.3% 1.0% 93.7% 89.0% 69.3% 100.0% 100.0% 100.0%
125 100 10.7% 5.4% 1.1% 93.4% 88.4% 70.4% 99.8% 99.8% 99.4%
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Table 5: Variable Descriptions

Variable Description Expected Sign
Dependent variable

FDI
The logarithm of total

investment of FDI firms
(RMB in 2005)

Explanatory variables

market
The logarithm of GDP

(RMB in 2005)
+

infra
The density of

road and railway
+

wage
The growth rate of logarithm of

the average wage of urban employee
(RMB in 2005)

−

open
The total export and

import over GDP
+

govern
Local government fiscal
expenditure over GDP

+/-

labor
The high school graduates

over population
+

Table 6: Summary statistics

Variable Obs Mean Std Max Min
FDI 638 11.8072 1.5123 15.0340 6.5425

market 609 8.3833 1.1278 10.8819 5.2363
infra 609 0.5711 0.4455 2.3103 0.0187
wage 609 0.0102 0.0056 0.0441 -0.0272
open 609 3.1598 4.0134 22.0295 0.3204

govern 609 0.1632 0.0825 0.6121 0.0492
labor 609 4.1549 1.9710 8.9012 1.0705
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Appendix A: First order conditions

Let Φi = diag(σ2
i , Σii) and Φ = diag(Φ1, Φ2, . . . , ΦN), and Φ̂i and Φ̂ be the corresponding QML

estimators. In this appendix, we presents the first order conditions for the objective function (3.3).
For ease of exposition, we define Ĥ = (Λ̂′Φ̂−1Λ̂)−1 and Ĝ = (Σ̂−1

f f + Λ̂′Φ̂−1Λ̂)−1 and partition it

into Ĝ = [G ′1,G ′2]′, where Ĝ1 is the first r1 rows and Ĝ2 the remaining r2 rows of Ĝ, respectively.
By (A + B)−1 = B−1 − (A + B)−1AB−1, we have Ĝ = Ĥ − ĜΣ̂−1

f f Ĥ.
Let Wit = (Yit−1, X′it)

′ and ψ = (ρ, β′)′. The first order condition with respect to ρ and β is

1
NT

N

∑
i=1

T

∑
t=1

1
σ̂2

i
Ẇit

{
(Ẏit − Ẇ ′itψ̂)− κ̂′i Ĝ1

N

∑
j=1

Λ̂jΦ̂−1
j

[
Ẏjt − Ẇ ′jtψ̂

Ẋ′jt

]}
= 0. (A.1)

The first order condition with respect to Σ f f is

Λ̂′Σ̂−1
zz

[
B̂ 1

T

T

∑
t=1

zt(ρ̂)zt(ρ̂)
′B̂′ − Σ̂zz

]
Σ̂−1

zz Λ̂ =

[
× 0r1×r2

0r2×r1 ×

]
, (A.2)

where on the right-hand-side of (A.2), only zero components correspond to the first order condi-
tions, while × denote components that do not subject to the first order (zero) conditions.

The first order condition for Λ leads to

Σ̂ f f Λ̂′Σ̂−1
zz

[
B̂ 1

T

T

∑
t=1

zt(ρ̂)zt(ρ̂)
′B̂′ − Σ̂zz

]
Σ̂−1

zz = Υ′, (A.3)

where Υ is an N(k + 1)× r matrix, whose entry is zero if the counterpart of Λ is not specified to
be zero, otherwise undetermined. Pre-multiplying Σ̂−1

f f and post-multiplying Λ̂ to (A.3), we get

Λ̂′Σ̂−1
zz

[
B̂ 1

T

T

∑
t=1

zt(ρ̂)zt(ρ̂)
′B̂′ − Σ̂zz

]
Σ̂−1

zz Λ̂ = Σ̂−1
f f Υ′Λ̂. (A.4)

Equating the right hand sides of (A.2) and (A.4), together with special structure of Υ and Λ̂, we
have Υ′Λ̂ = 0. Thus,

Λ̂′Φ̂−1
[
B̂ 1

T

T

∑
t=1

zt(ρ̂)zt(ρ̂)
′B̂′ − Σ̂zz

]
Φ̂−1Λ̂ = 0, (A.5)

where we use the fact Λ̂′Σ̂−1
zz = Σ̂−1

f f ĜΛ̂′Φ̂−1. Let Σij
zz = Λ′iΣ f f Λj + 1(i = j)Φi and

Mij
zz(ρ, β) =

1
T

T

∑
t=1

[
Ẏit − ρẎit−1 − Ẋ′itβ

Ẋit

] [
Ẏjt − ρẎjt−1 − Ẋ′jtβ, Ẋ′jt

]
.

With the above notations, the first order condition for κi gives

Ĝ1

N

∑
j=1

Λ̂jΦ̂−1
j

[
Mji

zz(ρ̂, β̂)− Σ̂ji
zz

]
Φ̂−1

i e1 = 0, (A.6)

where e1 is the first column of the (k + 1)-dimensional identity matrix.
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The first order condition for γi is

Ĝ2

N

∑
j=1

Λ̂jΦ̂−1
j

[
Mji

zz(ρ̂, β̂)− Σ̂ji
zz

]
Φ̂−1

i e− = 0, (A.7)

where e− is the matrix which is obtained by deleting first column of the (k + 1)-dimensional
identity matrix. The first order condition for Σjj is

Mjj
zz(ρ̂, β̂)− Σ̂jj

zz − Λ̂′jĜ
N

∑
i=1

Λ̂iΦ̂−1
i

(
Mij

zz(ρ̂, β̂)− Σ̂ij
zz

)
−

N

∑
i=1

(
Mji

zz(ρ̂, β̂)− Σ̂ji
zz

)
Φ̂−1

i Λ̂′iĜΛ̂j = J,

(A.8)

where J is a (k + 1)× (k + 1) matrix whose upper-left 1× 1 and lower-right k× k submatrices are
both zeros, the remaining elements are undetermined. The undetermined elements correspond
to the zero elements of Σii.

These first order conditions are used for the asymptotic analysis.

Appendix B: Proof of Proposition 5.1

For convenience of exposition, we further introduce the following notations. Let Ẇit = (Ẇit, 0(k+1)×k)
′,

ξ̂t = N−1 ∑N
i=1 Λ̂iΦ̂−1

i Ẇit and χ̂t = N−1 ∑N
i=1 Λ̂iΦ̂−1

i ε̇it. E1 is the left r1 columns of the r× r iden-
tity matrix and E2 is the remaining right r2 columns, i.e., [E1, E2] = Ir.

Throughout the proof of consistency, to avoid the potential ambiguity, we use the symbols
with asterisk to denote the underlying true values, the symbols with hat to denote the QML
estimators, and the symbols themselves to denote the input argument of the likelihood functions.
Once we have obtained the consistency, we drop asterisks from the symbols of the true values
for notational simplicity.

The following two lemmas are useful in our theoretical analysis, whose proofs are given in
the online supplement.

Lemma B.1 Under Assumptions A-C,

(a) E
∥∥∥ 1√

T

T

∑
t=1

ftε
′
it

∥∥∥2
≤ C, for each i,

(b) E
∥∥∥ 1√

T

T

∑
t=1

[εitε
′
jt − E(εitε

′
jt]
∥∥∥2
≤ C, for each i and j

(c) E
∥∥∥ 1√

NT

N

∑
i=1

T

∑
t=1

ΛiΦ−1
i εit f ′t

∥∥∥2
≤ C,

(d) E
∥∥∥ 1√

NT

N

∑
i=1

T

∑
t=1

ΛiΦ−1
i [εitε

′
jt − E(εitε

′
jt)]
∥∥∥2
≤ C, for each j,

(e) E
∥∥∥ 1

N
√

T

N

∑
i=1

N

∑
j=1

ΛiΦ−1
i

T

∑
t=1

[εitεjt − E(εitε
′
jt)]Φ

−1
j Λ′j

∥∥∥2
≤ C,
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( f ) E
∥∥∥ 1√

NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

1
σ4

i
Yit−1eit(e2

is − σ2
i )
∥∥∥2
≤ C.

where C is a generic constant.

Lemma B.2 Let θ = (ρ, β, Λ, Ψ). Under Assumption A-E,

(a) sup
θ∈Θ

∣∣∣∣ 1
N

tr
[
B∗−1

(
Λ∗

1
T

T

∑
t=1

ḟ ∗t ε′t

)
B∗−1′B′Σ−1

zz B
]∣∣∣∣ = op(1)

(b) sup
θ∈Θ

∣∣∣∣ 1
N

tr
[
B∗−1

( 1
T

T

∑
t=1

εtε
′
t − E(εtε

′
t)
)
B∗−1′B′Σ−1

zz B
]∣∣∣∣ = op(1)

(c) sup
θ∈Θ

tr
[
B∗−1ε̄ε̄′B∗−1′B′Σ−1

zz B
]
= op(1)

(d) sup
θ∈Θ

∣∣∣∣tr[ 1
T

T

∑
t=1

Ẏt−1ε̇′tB∗−1′B′Σ−1
zz B

]∣∣∣∣ = op(1)

where B∗ = IN ⊗ B∗ and B = IN ⊗ B.

Proof of Proposition 5.1. Throughout the proof, we use the following centered objective
function:

L(θ) = − 1
2N

ln |Σzz| −
1

2N
tr
[
BMzz(ρ)B′Σ−1

zz

]
+

1
2N

ln |Σ∗zz|+
1
2
(k + 1), (B.1)

where Σ∗zz = Λ∗Σ∗f f Λ∗′ + Φ∗ with Φ∗ = Bdiag(Σ∗εε). The above objective function differs by
a constant from the original one, so it has the same maximizer. The model specification gives
B∗zit(ρ

∗) = µ∗i +Λ∗′i f ∗t + εit. Applying the within-group transformation to this equation, we have
B∗ żit(ρ

∗) = Λ∗′i ḟ ∗t + ε̇it, implying
B∗ żt(ρ

∗) = Λ∗ ḟ ∗t + ε̇t (B.2)

with żt(ρ∗) = [z1t(ρ
∗)′, z2t(ρ∗)′, . . . , zNt(ρ

∗)′]′.
Consider the second term on the right hand side of (B.1), which we use II1 to denote. We have

II1 =
1

2N
tr
[
B 1

T

T

∑
t=1

żt(ρ)żt(ρ)
′B′Σ−1

zz

]
=

1
2N

tr
[ 1

T

T

∑
t=1

żt(ρ)żt(ρ)
′B′Σ−1

zz B
]
.

where Σzz = ΛΣ f f Λ′ + Φ. By the definition of żit(ρ), for each i,

żit(ρ) =

[
Ẏit − ρẎit−1

Ẋit

]
= −(ρ− ρ∗)Ẏit−1 + żit(ρ

∗) = −(ρ− ρ∗)Ẏit−1 + B∗−1(Λ∗′i ḟ ∗t + ε̇it),

where Ẏit−1 = (Ẏit−1, 01×k)
′. The above expression is equivalent to

żt(ρ) = −(ρ− ρ∗)Ẏt−1 + (IN ⊗ B∗−1)(Λ∗ ḟ ∗t + ε̇t) = −(ρ− ρ∗)Ẏt−1 + B∗−1(Λ∗ ḟ ∗t + ε̇t).

Now we introduce some symbols to simplify the notation. Define

Λ̃∗ = B∗−1Λ∗, Σ̃∗εε = B∗−1Σ∗εεB∗−1′, Σ∗εε =
1
T

T

∑
t=1

εtε
′
t
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Λ̃ = B−1Λ, Φ̃ = B−1ΦB−1′, Σ̃zz = B−1ΣzzB−1′.

With the above symbols, we have

1
T

T

∑
t=1

żt(ρ)żt(ρ)
′ = Σ̃∗zz + (ρ− ρ∗)2 1

T

T

∑
t=1

Ẏt−1Ẏ′t−1 − (ρ− ρ∗)
1
T

T

∑
t=1

Ẏt−1 ḟ ∗′t Λ̃∗′

− (ρ− ρ∗)Λ̃∗
1
T

T

∑
t=1

ḟ ∗t Ẏ′t−1 − (ρ− ρ∗)
1
T

T

∑
t=1

Ẏt−1ε̇′tB∗−1′

− (ρ− ρ∗)B∗−1 1
T

T

∑
t=1

ε̇tẎ′t−1 −B∗−1ε̄ε̄′B∗−1′

+ B∗−1
(

Λ∗
1
T

T

∑
t=1

ḟ ∗t ε′t

)
B∗−1′ + B∗−1

( 1
T

T

∑
t=1

εt ḟ ∗′t Λ∗′
)
B∗−1′

+ B∗−1
( 1

T

T

∑
t=1

εtε
′
t − E(εtε

′
t)
)
B∗−1′.

where Σ̃∗zz = Λ̃∗( 1
T Ḟ∗′ Ḟ∗)Λ̃∗′ + Σ̃∗εε. Let Ẏ−1 = (Ẏ0, Ẏ1, . . . , YT−1). Notice that

1
T

T

∑
t=1

Ẏt−1Ẏ′t−1 =
1
T

Ẏ−1Ẏ′−1 =
1
T

Ẏ−1MḞ∗ Ẏ
′
−1 +

1
T

Ẏ−1PḞ∗ Ẏ
′
−1,

Thus,

(ρ− ρ∗)2tr
[ 1

T

T

∑
t=1

Ẏt−1Ẏ′t−1Σ̃−1
zz

]
= (ρ− ρ∗)2tr

[ 1
T

Ẏ−1MḞ∗ Ẏ
′
−1Σ̃−1

zz

]
+ (ρ− ρ∗)2tr

[ 1
T

Ẏ−1PḞ∗ Ẏ
′
−1Σ̃−1

zz

]
.

Given the above expression, we can rewrite II1 as

II1 = (ρ− ρ∗)2 1
2NT

tr
[
Ẏ−1MḞ∗ Ẏ

′
−1Σ̃−1

zz

]
+

1
2N

tr
[
Σ̃∗εεΣ̃−1

zz

]
+

1
2NT

tr
[
Ψ(ρ)′Σ̃−1

zz Ψ(ρ)
]
+R(θ),

where Ψ(ρ) = (ρ− ρ∗)Ẏ−1Ḟ∗(Ḟ∗′ Ḟ∗)−1/2 − Λ̃∗(Ḟ∗′ Ḟ∗)1/2 and

R(θ) = −(ρ− ρ∗)
1
N

tr
[ 1

T

T

∑
t=1

Ẏt−1ε̇′tΣ̃
−1
zz

]
− (ρ− ρ∗)

1
2N

tr
[
B∗−1ε̄ε̄′B∗−1′Σ̃−1

zz

]
+

1
N

tr
[
B∗−1

(
Λ∗

1
T

T

∑
t=1

ḟ ∗t ε′t

)
B∗−1′Σ̃−1

zz

]
+

1
2N

tr
[
B∗−1

( 1
T

T

∑
t=1

εtε
′
t − Σ∗εε

)
B∗−1′Σ̃−1

zz

]
.

Let Φ̃ = B−1ΦB−1′. By ln |Σzz| = ln |Φ| + ln |Ir + Σ1/2
f f Λ′Φ−1ΛΣ1/2

f f | together with ln |B| =
ln |IN ⊗ B| = 0, we have

ln |Σzz| = ln |Φ|+ ln |Ir + Σ1/2
f f Λ′Φ−1ΛΣ1/2

f f | = ln |Φ̃| + ln
∣∣∣Ir + Σ1/2

f f Λ′Φ−1ΛΣ1/2
f f

∣∣∣.
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Let Φ̃∗ = B∗−1Φ∗B∗−1′. By the same arguments,

ln |Σ∗zz| = ln |Φ̃∗|+ ln
∣∣∣Ir + Σ∗1/2

f f Λ∗′Φ∗−1Λ∗Σ∗1/2
f f

∣∣∣.
Given the preceding two expressions, together with the facts (i) Σ̃−1

zz = Φ̃−1 − Φ̃−1Λ̃G̃Λ̃′Φ̃−1 and
(ii) tr(Σ̃∗εεΦ̃−1) = tr(Φ̃∗Φ̃−1), we can rewrite the objective function (B.1) as

L(θ) = − 1
2N

[
− ln |Φ̃∗Φ̃−1|+ tr(Φ̃∗Φ̃−1)− N(k + 1)

]
− 1

2N
ln
∣∣∣Ir + Σ1/2

f f Λ′Φ−1ΛΣ1/2
f f

∣∣∣
+

1
2N

ln
∣∣∣Ir + Σ∗1/2

f f Λ∗′Φ∗−1Λ∗Σ∗1/2
f f

∣∣∣
− 1

2NT
tr
[
Ψ(ρ)′Σ̃−1

zz Ψ(ρ)
]

− (ρ− ρ∗)2 1
2NT

tr
[
Ẏ−1MḞ∗ Ẏ

′
−1Σ̃−1

zz

]
+

1
2N

tr
[
Σ̃∗εεΦ̃−1Λ̃G̃Λ̃′Φ̃−1

]
−R(θ)

with G̃ = (Σ−1
f f + Λ̃′Φ̃−1Λ̃)−1. The above expression can be further written as

L(θ) = L1(θ) + L2(θ),

where

L1(θ) = −
1

2N

[
− ln |Φ̃∗Φ̃−1|+ tr(Φ̃∗Φ̃−1)− N(k + 1)

]
− 1

2NT
tr
[
Ψ(ρ)′Σ̃−1

zz Ψ(ρ)
]

− 1
2N

ln
∣∣∣Ir + Σ1/2

f f Λ′Φ−1ΛΣ1/2
f f

∣∣∣− (ρ− ρ∗)2 1
2NT

tr
[
Ẏ−1MḞ∗ Ẏ

′
−1Σ̃−1

zz

]
,

and
L2(θ) =

1
2N

ln
∣∣∣Ir + Σ∗1/2

f f Λ∗′Φ∗−1Λ∗Σ∗1/2
f f

∣∣∣+ 1
2N

tr
[
Σ̃∗εεΦ̃−1Λ̃G̃Λ̃′Φ̃−1

]
−R(θ).

The first term of L2(θ) only involves the underlying true values, so it is easy to show that
this term is O(ln N/N). The second term is Op(N−1) since Σ̃∗εεΦ̃−1 ≤ CΣ̃∗εε for some large
constant C by the boundedenss of β and β∗ and Assumption E, and the latter term is further
bounded by C̃IN for some C̃ by Assumption C. The last term is op(1) uniformly on Θ due to
Lemma 1. Given these results, we have L2(θ) = op(1) uniformly on Θ. Since θ̂ maximizes
L(θ), L(θ̂) ≥ L(θ∗), implying L1(θ̂) ≥ L1(θ

∗) + L2(θ∗) − L2(θ̂). But L1(θ
∗) = 0. Therefore,

L1(θ̂) ≥ −2 supθ∈Θ |L2(θ)| = op(1). However, all the four terms in L1(θ) are non-positive. This
leads to

(ρ̂− ρ∗)2 1
2NT

tr
[
Ẏ−1MḞ∗ Ẏ

′
−1Σ̃−1

zz

]
= op(1). (B.3)

1
2N

[
− ln |Φ̃∗Φ̃−1|+ tr(Φ̃∗Φ̃−1)− N(k + 1)

]
= op(1). (B.4)

1
2NT

tr
[
Ψ(ρ)′Σ̃−1

zz Ψ(ρ)
]
= op(1). (B.5)
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Consider Yit = α∗i + ρ∗Yit−1 + X′itβ
∗ + κ∗′i g∗t + eit. Substitute Xit = ν∗i + γ∗′i h∗t + vit into the expres-

sion of Yit,
Yit = (α∗i + ν∗′i β∗) + ρ∗Yit−1 + κ∗′i g∗t + β∗′γ∗′i h∗t + (eit + v′itβ

∗).

We can transform the above autoregressive expression to the following moving average one:

Yit−1 =
α∗i + ν∗′i β∗

1− ρ∗
+ κ∗′i

∞

∑
s=0

ρ∗sg∗t−s−1 + β∗′γ∗′i

∞

∑
s=0

ρ∗sh∗t−s−1︸ ︷︷ ︸
b̃it−1

+
∞

∑
s=0

ρ∗s(eit−s−1 + v′it−s−1β∗)︸ ︷︷ ︸
ũit−1

. (B.6)

Let B̃t−1 and Ũt−1 be defined similarly as Yt−1, and B̃−1 and Ũ−1 be defined similarly as Y−1. By
definition, Ẏ−1 = ˙̃B−1 +

˙̃U−1. Consider 1
2NT tr[Ẏ−1MḞ∗ Ẏ

′
−1Σ̃−1

zz ], which can be written as

1
2NT

tr[Ẏ−1MḞ∗ Ẏ
′
−1Σ̃−1

zz ] =
1

2NT
tr
[

˙̃B−1MḞ∗
˙̃B
′
−1Σ̃−1

zz

]
+

1
NT

tr
[

˙̃B−1MḞ∗
˙̃U
′
−1Σ̃−1

zz

]
+

1
2NT

tr
[

˙̃U−1MḞ∗
˙̃U
′
−1Σ̃−1

zz

]
.

However, by the similar arguments in the proof of Lemma B.2, we can show

sup
θ∈Θ

∣∣∣∣ 1
NT

tr
[

˙̃B−1MḞ∗
˙̃U
′
−1Σ̃−1

zz

]∣∣∣∣ = op(1).

and

sup
θ∈Θ

∣∣∣∣ 1
NT

tr
[

˙̃U−1MḞ∗
˙̃U
′
−1Σ̃−1

zz

]
− 1

NT

T

∑
t=1

1
σ2

i
E(ũ2

it−1)

∣∣∣∣ = op(1).

Given the above results, we have

1
2NT

tr[Ẏ−1MḞ∗ Ẏ
′
−1Σ̃−1

zz ] =
1

2NT
tr
[

˙̃B−1MḞ∗
˙̃B
′
−1Σ̃−1

zz

]
+

1
2NT

T

∑
t=1

1
σ2

i
E(ũ2

it−1) + op(1),

which is greater than zero since the first term is non-negative, the second is strictly positive by
Assumptions C.4 and E. This implies ρ̂

p−→ ρ∗ by (B.3).
Further consider (B.4). Some straightforward computations lead to

1
N

tr(Φ̃∗Φ̃−1) =
1
N

tr(Φ∗Φ−1) + (β− β∗)′
[ 1

NT

N

∑
i=1

1
σ2

i

T

∑
t=1

E(vitv′it)
]
(β− β∗).

The above result, together with ln |Φ̃∗Φ̃−1| = ln |Φ∗Φ−1| and (B.4), gives

1
2N

[
− ln |Φ∗Φ−1|+ tr(Φ∗Φ−1)− N(k + 1)

]
+

1
2N

(β− β∗)′
[ 1

NT

N

∑
i=1

1
σ2

i

T

∑
t=1

E(vitv′it)
]
(β− β∗) = op(1).

Let λ be a genetic eigenvalue of the matrix Φ−1/2Φ∗Φ−1/2. Apparently, it is real. Given the fact
that f (λ) = λ− ln λ− 1 ≥ 0 for all real λ, we have that the first expression on the left hand side
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of the preceding equation is non-negative. The second is obviously non-negative too. Given this,
we have

1
2N

(β− β∗)′
[ 1

NT

N

∑
i=1

1
σ2

i

T

∑
t=1

E(vitv′it)
]
(β− β∗) = op(1),

implying β̂
p−→ β∗. In addition, we also have

1
2N

[
− ln |Φ∗Φ−1|+ tr(Φ∗Φ−1)− N(k + 1)

]
= op(1),

which, by the same arguments in Bai and Li (2014), gives 1
N ∑N

i=1 ‖Φ̂i −Φ∗i ‖2 = op(1), which is
equivalent to

1
N

N

∑
i=1

[
|σ̂2

i − σ∗2i |2 + ‖Σ̂ii − Σ∗ii‖2
]
= op(1).

Next consider (B.5). Given that ρ̂
p−→ ρ∗, β̂

p−→ β∗ and 1
N ∑N

i=1 ‖Φ̂i −Φ∗i ‖2 = op(1), we can readily
show that

1
NT

tr
[
(Ḟ∗′ Ḟ∗)1/2Λ∗′Σ̂−1

zz Λ∗(Ḟ∗′ Ḟ∗)1/2
]
= op(1),

which is equivalent to 1
N Λ∗′Σ̂−1

zz Λ∗ = op(1) since the matrix Λ∗′Σ̂−1
zz Λ∗ is semi-positive definite.

By the Woodbury formula Σ̂−1
zz = Φ̂−1− Φ̂−1Λ̂ĜΛ̂′Φ̂−1, this result can be alternatively written as

1
N

Λ∗′Φ̂−1Λ∗ − 1
N

Λ∗′Φ̂−1Λ̂ĜΛ̂′Φ̂−1Λ∗ = op(1).

Note that Ĝ ≥ Ĥ by the definitions of Ĝ and Ĥ, then

0 ≤ 1
N

Λ∗′Φ̂−1Λ∗ − 1
N

Λ∗′Φ̂−1Λ̂ĤΛ̂′Φ̂−1Λ∗

≤ 1
N

Λ∗′Φ̂−1Λ∗ − 1
N

Λ∗′Φ̂−1Λ̂ĜΛ̂′Φ̂−1Λ∗ = op(1).

The above result gives

1
N

Λ∗′Φ̂−1Λ∗ − 1
N

Λ∗′Φ̂−1Λ̂ĤΛ̂′Φ̂−1Λ∗ = op(1). (B.7)

By 1
N ∑N

i=1 ‖Φ̂i − Φ∗i ‖2 = op(1), we have 1
N Λ∗′Φ̂−1Λ∗ − 1

N Λ∗′Φ∗−1Λ∗ = op(1). However, by
Assumption B.2,

τmin

( 1
N

Λ∗′Φ∗−1Λ∗
)
≥ τmax(Φ∗)−1τmin

( 1
N

Λ∗′Λ∗
)
> 0,

implying that 1
N Λ∗′Φ∗−1Λ∗ is a positive definite matrix. This implies that 1

N Λ∗′Φ̂−1Λ̂ĤΛ̂′Φ̂−1Λ∗ =
1
N Λ∗′Φ∗−1Λ∗ + op(1) and 1

N Λ∗′Φ̂−1Λ̂ĜΛ̂′Φ̂−1Λ∗ = 1
N Λ∗′Φ∗−1Λ∗ + op(1). Substituting Ĝ =

Ĥ − ĜΣ̂−1
f f Ĥ into the last expression, with some algebra manipulations, we conclude Ĝ = op(1),

which further implies Ĥ = op(1) due to Ĝ = Ĥ − ĜΣ̂−1
f f Ĥ.

Define A ≡ Λ∗′Φ̂−1Λ̂(Λ̂′Φ̂−1Λ̂)−1 = diag(A11,A22) with

A11 =
[ N

∑
i=1

1
σ̂2

i
κ∗i κ̂′i

][ N

∑
i=1

1
σ̂2

i
κ̂iκ̂
′
i

]−1
, A22 =

[ N

∑
i=1

γ∗i Σ̂−1
ii γ̂′i

][ N

∑
i=1

γ̂iΣ̂−1
ii γ̂′i

]−1
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where the second equation is due to the special structures of Λ and Φ. The first order condition
(A.5) can be written as

Σ̂ f f = A′M f fA+A′ 1
T

T

∑
t=1

ḟ ∗t χ̂′tĤN + ĤN
1
T

T

∑
t=1

χ̂t ḟ ∗′t A (B.8)

+ Ĥ
N

∑
i=1

N

∑
j=1

Λ̂iΦ̂−1
i

1
T

T

∑
t=1

[εitε
′
jt − E(εitε

′
jt)]Φ̂

−1
j Λ̂′jĤ

− A′ 1
T

T

∑
t=1

ḟ ∗t (ψ̂− ψ∗)′ ξ̂ ′tĤN − ĤN
1
T

T

∑
t=1

ξ̂t(ψ̂− ψ∗) ḟ ∗′t A

− ĤN
1
T

T

∑
t=1

χ̂t(ψ̂− ψ∗)′ ξ̂ ′tĤN − ĤN
1
T

T

∑
t=1

ξ̂t(ψ̂− ψ∗)χ̂′tĤN

+ ĤN
1
T

T

∑
t=1

ξ̂t(ψ̂− ψ∗)(ψ̂− ψ∗)′ ξ̂ ′tĤN − Ĥ

−H
N

∑
i=1

N

∑
j=1

Λ̂iΦ̂−1
i ε̄i ε̄

′
jΦ̂
−1
j Λ̂′jĤ

+ Ĥ
N

∑
i=1

N

∑
j=1

Λ̂iΦ̂−1
i

1
T

T

∑
t=1

E(εitε
′
jt)Φ̂

−1
j Λ̂′jĤ,

where ĤN = N · Ĥ. By the arguments in the proof of Lemma A.2 in Li, Cui and Lu (2019),
together with Ĥ = op(1) and ρ̂ = ρ∗ + op(1) and β̂ = β∗ + op(1), we can show

Σ̂ f f = A′M f fA+ ‖ĤN‖2 ·
(

Op(
1√
T
) + Op(

1
N
)
)
+ op(1). (B.9)

Given (B.7) and (B.9), by the arguments on Page 460 of Bai and Li (2012), we have A = Op(1)
and A−1 = Op(1). There results, together with (B.7), give Ĥ = Op(

1
N ) and Ĝ = Op(

1
N ).

Consider the first order conditions on κi and γi. By the basic fact that

Mij
zz(ρ̂, β̂) =

1
T

T

∑
t=1

[
Λ∗′i ḟ ∗t + ε̇it − Ẇit(ψ̂− ψ∗)

][
Λ∗′j ḟ ∗t + ε̇jt − Ẇjt(ψ̂− ψ∗)

]′
,

together with some algebra manipulations, we have

κ̂i − R1κ∗i = M−1
gg Ĝ1N

1
T

T

∑
t=1

χ̂t ġ∗′t κ∗i + M−1
gg Ĝ1

N

∑
j=1

Λ̂jΦ̂−1
j Λ∗j

1
T

T

∑
t=1

ḟ ∗t ėit (B.10)

+ M−1
gg Ĝ1

N

∑
j=1

Λ̂jΦ̂−1
j

1
T

T

∑
t=1

ε̇jt ėit −M−1
gg Ĝ1N

1
T

T

∑
t=1

ξ̂t(ψ̂− ψ∗)ėit

−M−1
gg Ĝ1N

1
T

T

∑
t=1

χ̂t(ψ̂− ψ∗)′Ẇit −M−1
gg Ĝ1N

1
T

T

∑
t=1

ξ̂t(ψ̂− ψ∗)ġ∗′t κ∗i

−M−1
gg Ĝ1

N

∑
j=1

Λ̂jΦ̂−1
j Λ∗′j

1
T

T

∑
t=1

ḟ ∗t (ψ̂− ψ∗)′Ẇit
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+ M−1
gg Ĝ1N

1
T

T

∑
t=1

ξ̂t(ψ̂− ψ∗)(ψ̂− ψ∗)′Ẇit

with ĜN = N · Ĝ, Ĝ1N = E′1ĜN , and

R1 = M−1
gg Ĝ1Λ̂′Φ̂−1Λ∗M f f E1 = M−1

gg E′1(Ĥ − ĜΣ̂−1
f f Ĥ)Λ̂′Φ̂−1Λ∗M f f E1

= M−1
gg A′11Mgg −M−1

gg E′1ĜΣ̂−1
f f A

′M f f E1.

and

γ̂i − R2γ∗i = M−1
hh Ĝ2N

1
T

T

∑
t=1

χ̂tḣ∗′t γ∗i + M−1
hh Ĝ2

N

∑
j=1

Λ̂jΦ̂−1
j Λ∗′j

1
T

T

∑
t=1

ḟ ∗t v̇′it (B.11)

+ M−1
hh Ĝ2

N

∑
j=1

Λ̂jΦ̂−1
j

1
T

T

∑
t=1

ε̇jtv̇′it −M−1
hh Ĝ2N

1
T

T

∑
t=1

ξ̂t(ψ̂− ψ∗)v̇′it

−M−1
hh Ĝ2N

1
T

T

∑
t=1

ξ̂t(ψ̂− ψ∗)ḣ∗′t γ∗i ,

with Ĝ2N = NĜ2 and

R2 = M−1
hh Ĝ2Λ̂′Φ̂−1Λ∗M f f E2 = M−1

hh A
′
22Mhh −M−1

hh E′2ĜΣ̂−1
f f A

′M f f E2.

Consider (B.10). We use Ii1, Ii2, . . . , Ii8 to denote the eight terms on the right hand side of
(B.10). By the Cauchy-Schwarz inequality,

1
N

N

∑
i=1
‖κ̂i − R1κ∗i ‖2 ≤ 8

1
N

N

∑
i=1

(
‖Ii1‖2 + ‖Ii2‖2 + · · ·+ ‖Ii8‖2

)
.

By ĤN = Op(1) and ĜN = Op(1), Lemma B.3 in the online supplement indicates that 1
N ∑N

i=1 ‖Iil‖2 =

op(1) for each l = 1, 2, . . . , 8. Therefore, 1
N ∑N

i=1 ‖κ̂i −R1κ∗i ‖2 = op(1). Similarly, we can show that
1
N ∑N

i=1 ‖γ̂i − R2γ∗i ‖2 = op(1). Given this, we have

1
N

N

∑
i=1

(
‖κ̂i − R1κ∗i ‖2 + ‖γ̂i − R2γ∗i ‖2

) p−→ 0.

This completes the proof. �

The proofs of Theorems 5.1, 5.2, 5.3 and 6.1 are given in the online supplement.

Appendix C: Simulation results based on the mimic data

This appendix consist of two parts. The first part adds the Monte Carlo simulation that mimics
the real data in Section 9. The second part provides the empirical results under different r2

values.
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Appendix C.1: Monte Carlo simulation based on the real data

Since the explanatory variables are observed, we use these observed data in simulations to mimic
the real data to the largest extent. Given the data of explanatory variables, we only need to
generate the pseudo data of the dependent variables. More specifically, the Y data are generated
according to

Ỹit = ρ̂Ỹit−1 + X′it β̂ + κ̂′i ĝt + ε it.

where ρ̂, β̂, κ̂i and ĝt are the QML estimators. Here we use the symbol with tilde to denote the
pseudo dependent variables. We consider four ways to generated ε it.

1. ε it = σ̂iςit, where σ̂2
i is the QML estimator and ςit is a standard normal variable;

2. ε it = êitςit, where êit is the residual of eit and ςit is defined the same as above;

3. Let εt = (ε1t, ε2t, . . . , εNt)
′. εt is the bootstrapped value, which is drawn from the pool

{ê1, ê2, . . . , êT} with êt = (ê1t, . . . , êNt)
′.

4. Let b be the size of block and ê?t = (êt, êt+1, . . . , êt+b−1). For each t, if it satisfies t = mb + 1
with m being an integer, the next b-period errors (εt, . . . , εt+b−1) are drawn from the pool
{ê?1 , . . . , ê?T−b+1}. We set b = 3 in simulations.

The first two ways are the Monte Carlo methods and the next two are the bootstrap methods.
For the first set, only the information of cross sectional heteroskedasticity is used. For the second
set, it is possible to additionally keep the serial heteroskedasticity in error. However, the first two
sets discard the cross sectional and serial correlations among the residuals êit. For the third set,
note that the bootstrap procedure is based on the N-dimensional vector, so the cross sectional
correlation is maintained. For the fourth set, since we use the block bootstrap procedure, the
cross sectional correlation and partial serial correlation are maintained.

Our simulations are conducted with 1000 repetitions. To evaluate the finite sample perfor-
mance, we calculate the estimated coefficients, which are the mean of the 1000 estimated co-
efficients, the estimated SDs, which are the mean of the estimated standard deviations, and the
simulated SDs, which are the standard deviations of the 1000 estimated coefficient. The distances
of the estimated means and the QML estimators indicate the magnitude of the bias. In addition,
the simulated SD is the precise SD values because it is obtained from the 1000 estimated coef-
ficients. The estimated SD is the nominal one because it is calculated based on the asymptotic
theory. So the ratios of the simulated SDs relative to the estimated SDs denote magnitudes of
distortion in the limited sample size.

Table C.1: Estimation results based on the mimic data
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Lag Market Infra Wage Open Govern Labor
True values 0.7093 0.0439 0.0622 -2.7830 0.0222 0.4965 0.0088
SD 0.0220 0.0208 0.0257 0.9581 0.0039 0.1705 0.0040

Set One
Estimated values 0.7093*** 0.0445* 0.0625** -2.7354** 0.0221*** 0.4867** 0.0087*
Estimated SD 0.0023 0.0189 0.0229 0.7268 0.0027 0.1487 0.0038
Simulated SD 0.0027 0.0232 0.0283 0.8850 0.0032 0.1816 0.0046

Set Two
Estimated values 0.7093*** 0.0435* 0.0628** -2.6868** 0.0222*** 0.5222** 0.0084*
Estimated SD 0.0031 0.0184 0.0216 0.8190 0.0028 0.1801 0.0035
Simulated SD 0.0050 0.0242 0.0285 1.1847 0.0041 0.2554 0.0047

Set Three
Estimated values 0.7084*** 0.0427* 0.0614* -2.7553** 0.0224*** 0.5027* 0.0091
Estimated SD 0.0023 0.0190 0.0222 0.7102 0.0026 0.1543 0.0039
Simulated SD 0.0094 0.0265 0.0327 1.1910 0.0042 0.2330 0.0087

Set Four
Estimated Values 0.7098*** 0.0428* 0.0628* -2.5227** 0.0221*** 0.4922* 0.0089
Estimated SD 0.0020 0.0206 0.0231 0.6490 0.0024 0.1364 0.0035
Simulated SD 0.0068 0.0271 0.0344 1.0658 0.0038 0.2277 0.0085

Table C.1 presents the simulation results based on the mimic data. Given the above values,
we compute the adjusted t-statistic as follows

Adjusted t =
Estimated SD
Simulalted SD

(2 ∗ Ture Value− Estimated Value)
SD

.

Given the adjusted t-statistics, we relabel the significance levels on the coefficients, as shown in
the above table.

From Table C.1, we can draw the following conclusions. First, the bias issue is not pro-
nounced. Given the QML estimator as the underlying values, the estimated coefficients based
on the simulated data in all the design types are around underlying true values, and the biases
are too small to change the signs of estimated coefficients. Second, the adjusted t-statistics have
changed a lot, which lead to the changes of the significance level. However, except for the re-
gressor LABOR, the remaining coefficients are still significant under the 10% significance level.
However, as shown in the main text, if we delete LABOR, the remaining coefficients still have
correct signs and are statistically significant. Given these, we believe that although the limited
sample size indeed has large effects on the empirical results, the main conclusions of the paper
are not changed.

Appendix C.2: Empirical results under different r2 values

We present the empirical results under different r2 values. As point out in the main text, the
data-driven methods fail to give the same estimated value. However, we find that the empirical
results are little affected by the r2 value, as seen in the following table. Due to this reason, we
think that the conclusions drawn from Table 7 are reliable.

Table C.2: Additional empirical results of the QML method
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Explanatory
variables

r1 = 1
r2 = 1

r1 = 1
r2 = 2

r1 = 1
r2 = 3

r1 = 1
r2 = 4

FDI(-1) 0.7093*** 0.7093*** 0.7092*** 0.7092***
(0.0220) (0.0220) (0.0220) (0.0220)

market 0.0439** 0.0439** 0.0438** 0.0438**
(0.0208) (0.0208) (0.0208) (0.0208)

infra 0.0622** 0.0622** 0.0624*** 0.0623***
(0.0257) (0.0257) (0.0257) (0.0257)

wage -2.7830*** -2.7830*** -2.7872*** -2.7861***
(0.9581) (0.9581) (0.9577) (0.9578)

open 0.0222*** 0.0222*** 0.0222*** 0.0222***
(0.0039) (0.0039) (0.0039) (0.0039)

govern 0.4965*** 0.4966*** 0.4960*** 0.4963***
(0.1705) (0.1705) (0.1705) (0.1705)

labor 0.0088** 0.0088** 0.0088** 0.0088**
(0.0040) (0.0040) (0.0040) (0.0040)

45



 

 

 

 

 

 


	1
	tsinghua
	Introduction
	Methodology
	Quasi likelihood function
	Assumptions
	Asymptotic properties
	Hypothesis testing
	Computing method
	Simulations
	The Location Determinants of China's FDI Inflow
	Data and variables
	Empirical results

	Conclusion

	2

